Enhanced low-temperature performance of CO2 methanation over mesoporous Ni/Al2O3-ZrO2 catalysts

被引:223
作者
Lin, Jianghui [1 ]
Ma, Caiping [2 ,3 ]
Wang, Qiong [1 ]
Xu, Yanfei [1 ]
Ma, Guangyuan [1 ]
Wang, Jie [1 ]
Wang, Hongtao [1 ]
Dong, Chenglong [1 ]
Zhang, Chenghua [4 ]
Ding, Mingyue [1 ]
机构
[1] Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Sch Power & Mech Engn, Wuhan 430072, Hubei, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Shanxi, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Synfuels China Co Ltd, Beijing 101407, Peoples R China
基金
中国国家自然科学基金;
关键词
Synthetic natural gas; CO2; methanation; Ni/Al2O3-ZrO2; Oxygen vacancies; Lower temperature performance; CARBON-DIOXIDE; HYDROGEN-PRODUCTION; PARTIAL OXIDATION; COMBUSTION METHOD; NI CATALYSTS; SURFACE; OPPORTUNITIES; IMPREGNATION; CONVERSION; STABILITY;
D O I
10.1016/j.apcatb.2018.10.059
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting carbon dioxide to value-added chemicals has been attracted much attention, whereas direct hydrogenation of CO2 to synthetic natural gas (SNG) at a lower temperature remains a big challenge. Mesoporous Al2O3-ZrO2 modified Ni catalysts were prepared via a single-step epoxide-driven sol-gel method for CO2 methanation. Almost 100% selectivity of CH4 with 77% CO2 conversion were obtained at a lower temperature of 300 degrees C, and no catalyst deactivation was observed in 100 h. Different characterization methods including N-2 adsorption-desorption, H-2-TPR, H-2-TPD, XRD, XPS, and TEM were combined together to explore the interaction of Ni-ZrO2 and Al2O3-ZrO2. Incorporation of ZrO2 into Ni/Al2O3 weakened the Ni-Al2O3 interaction via the combination of Al2O3-ZrO2 solid solution, promoting the reduction and dispersion of NiO phase. The adding of higher Zr loading increased the amount of active metallic nickel sites and oxygen vacancies on the composite support, improving obviously the lower temperature catalytic activity and CH4 selectivity. Higher Ni species loading further resulted in the formation of active Ni sites and improved the low-temperature CO2 methanation performance. Moreover, the enhanced stability of the Al2O3-ZrO2 support and oxygen vacancies provided by the ZrO2 promoter could help to promote the catalytic stability.
引用
收藏
页码:262 / 272
页数:11
相关论文
共 56 条
[51]   Hydrogen production by auto-thermal reforming of ethanol over nickel catalyst supported on mesoporous yttria-stabilized zirconia [J].
Youn, Min Hye ;
Seo, Jeong Gil ;
Jung, Ji Chul ;
Park, Sunyoung ;
Song, In Kyu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (13) :5390-5397
[52]   Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2 [J].
Younas, Muhammad ;
Kong, Leong Loong ;
Bashir, Mohammed J. K. ;
Nadeem, Humayun ;
Shehzad, Areeb ;
Sethupathi, Sumathi .
ENERGY & FUELS, 2016, 30 (11) :8815-8831
[53]   Enhanced performance and selectivity of CO2 methanation over g-C3N4 assisted synthesis of Ni-CeO2 catalyst: Kinetics and DRIFTS studies [J].
Yu, Yang ;
Chan, Yi Meng ;
Bian, Zhoufeng ;
Song, Fujiao ;
Wang, Juan ;
Zhong, Qin ;
Kawi, Sibudjing .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (32) :15191-15204
[54]   Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation [J].
Zhao, Anmin ;
Ying, Weiyong ;
Zhang, Haitao ;
Ma, Hongfang ;
Fang, Dingye .
CATALYSIS COMMUNICATIONS, 2012, 17 :34-38
[55]   Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation [J].
Zhao, Kechao ;
Wang, Weihan ;
Li, Zhenhua .
JOURNAL OF CO2 UTILIZATION, 2016, 16 :236-244
[56]   Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure [J].
Zhou, Guilin ;
Liu, Huiran ;
Cui, Kaikai ;
Xie, Hongmei ;
Jiao, Zhaojie ;
Zhang, Guizhi ;
Xiong, Kun ;
Zheng, Xuxu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (25) :16108-16117