Martensitic phase transformation and pop-in in compression of austenitic steel nanoplates observed in situ by transmission electron microscopy

被引:4
|
作者
Kim, Yong-Jae [1 ]
Yoo, Byung-Gil [1 ]
Choi, In-Chul [1 ]
Seok, Moo-Young [1 ]
Kim, Ju-Young [2 ]
Ohmura, Takahito [3 ]
Jang, Jae-il [1 ]
机构
[1] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea
[2] Ulsan Natl Inst Sci & Technol, Sch Mech & Adv Mat Engn, Ulsan 689805, South Korea
[3] Natl Inst Mat Sci, Res Ctr Strateg Mat, Tsukuba, Ibaraki 3050047, Japan
基金
新加坡国家研究基金会;
关键词
Martensitic transformation; Steel; In situ TEM; Pop-in; STAINLESS-STEELS; NANOINDENTATION; DEFORMATION; BEHAVIOR; TEMPERATURE;
D O I
10.1016/j.matlet.2012.02.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To explore small-scale martensitic phase transformation and its relation to pop-ins observed in stress-strain curve, in situ compression experiments in transmission electron microscope were performed on austenitic steel nanoplates. Diffraction mode test revealed that the transformation indeed occurs at the nanoscale, but the pop-in seems not related with sudden microstructural change. Additional imaging mode test suggests that pop-ins may be caused by rapid formation of slip band and/or shearing-off of the nanoplate. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 50 条
  • [31] PHASE TRANSFORMATION OF COPPER-OXINATE CRYSTALS OBSERVED BY ELECTRON MICROSCOPY
    SUITO, E
    ARAKAWA, M
    KOBAYASH.T
    KOLLOID-ZEITSCHRIFT AND ZEITSCHRIFT FUR POLYMERE, 1966, 213 (1-2): : 135 - &
  • [32] The crystallographic mechanism for deformation induced martensitic transformation observed by high resolution transmission electron microscope
    Zhang Weina
    Liu Zhenyu
    Zhang Zhibo
    Wang Guodong
    MATERIALS LETTERS, 2013, 91 : 158 - 160
  • [33] A STUDY BY MEANS OF ELECTRON MICROSCOPE OF STRUCTURAL HARDENING OF AN INOXIDABLE AUSTENITIC-MARTENSITIC STEEL IN CONTROLLED TRANSFORMATION
    SAORES, RC
    THOMAS, B
    HENRY, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1967, 265 (22): : 1220 - &
  • [34] TRANSMISSION ELECTRON-MICROSCOPY OBSERVATIONS OF RECRYSTALLIZATION PROCESS IN AUSTENITIC HEAT RESISTING STEEL
    SEO, T
    SHINOHARA, K
    KUMADA, K
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 1979, 43 (04) : 296 - 304
  • [35] Deformation-Induced γ → α'-Martensitic Transformation in Austenitic Stainless Steel Obtained by Electron Beam Additive Manufacturing
    Mel’nikov E.V.
    Astafurov S.V.
    Maier G.G.
    Kolubaev E.A.
    Astafurova E.G.
    Steel in Translation, 2022, 52 (12) : 1127 - 1134
  • [36] STRUCTURAL CHARACTERIZATION OF A USED RAIL STEEL AS OBSERVED BY TRANSMISSION ELECTRON-MICROSCOPY
    MATHE, DL
    MESHII, M
    SUNWOO, H
    FINE, ME
    STONE, DH
    JOURNAL OF METALS, 1979, 31 (08): : F6 - F6
  • [37] Scanning Kelvin probe force microscopy study on hydrogen distribution in austenitic stainless steel after martensitic transformation
    Hua, Zhengli
    Zhu, Shengyi
    Shang, Juan
    Cheng, Guangxu
    Yao, Yanchen
    Zheng, Jinyang
    MATERIALS LETTERS, 2019, 245 : 41 - 44
  • [38] In-situ strain measurement of shape memory alloy fiber during the austenitic and martensitic phase transformation
    Ma, Chien-Ching
    Chang, Ching-Yuan
    Chang, Ching-Ying
    SMART MATERIALS AND STRUCTURES, 2021, 30 (09)
  • [39] Analysis of Phase Transformation of Austenitic 316L Implant Steel during Compression
    Gradzka-Dahlke, M.
    Waliszewski, J.
    DIFFUSION IN SOLIDS AND LIQUIDS IV, 2009, 283-286 : 285 - +
  • [40] Martensitic transformation and magnetic domains in Mn50Ni40Sn10 studied by in-situ transmission electron microscopy
    Tian, H. F.
    Lu, J. B.
    Ma, L.
    Shi, H. L.
    Yang, H. X.
    Wu, G. H.
    Li, J. Q.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (03)