Graphene-based semiconductor photocatalysts

被引:2435
作者
Xiang, Quanjun [1 ]
Yu, Jiaguo [1 ]
Jaroniec, Mietek [2 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Kent State Univ, Dept Chem, Kent, OH 44242 USA
基金
中国国家自然科学基金;
关键词
IN-SITU GROWTH; HYDROGEN-PRODUCTION; TIO2-GRAPHENE NANOCOMPOSITES; HYDROTHERMAL PREPARATION; FUNCTIONALIZED GRAPHENE; METAL NANOPARTICLES; TIO2; NANOPARTICLES; GRAPHITE OXIDE; QUANTUM DOTS; WATER;
D O I
10.1039/c1cs15172j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This critical review ends with a summary and some perspectives on the challenges and new directions in this emerging area of research (158 references).
引用
收藏
页码:782 / 796
页数:15
相关论文
共 171 条
  • [1] Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature
    Abdelsayed, Victor
    Moussa, Sherif
    Hassan, Hassan M.
    Aluri, Hema S.
    Collinson, Maryanne M.
    El-Shall, M. Samy
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (19): : 2804 - 2809
  • [2] Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation
    Akhavan, O.
    Ghaderi, E.
    Esfandiar, A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (19) : 6279 - 6288
  • [3] Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol
    Akhavan, O.
    [J]. CARBON, 2011, 49 (01) : 11 - 18
  • [4] Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction
    Akhavan, O.
    Abdolahad, M.
    Esfandiar, A.
    Mohatashamifar, M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (30) : 12955 - 12959
  • [5] Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation
    Akhavan, O.
    Ghaderi, E.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) : 20214 - 20220
  • [6] Graphene Nanomesh by ZnO Nanorod Photocatalysts
    Akhavan, Omid
    [J]. ACS NANO, 2010, 4 (07) : 4174 - 4180
  • [7] Honeycomb Carbon: A Review of Graphene
    Allen, Matthew J.
    Tung, Vincent C.
    Kaner, Richard B.
    [J]. CHEMICAL REVIEWS, 2010, 110 (01) : 132 - 145
  • [8] Functional Composite Materials Based on Chemically Converted Graphene
    Bai, Hua
    Li, Chun
    Shi, Gaoquan
    [J]. ADVANCED MATERIALS, 2011, 23 (09) : 1089 - 1115
  • [9] Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite
    Bell, Nicholas J.
    Ng, Yun Hau
    Du, Aijun
    Coster, Hans
    Smith, Sean C.
    Amal, Rose
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) : 6004 - 6009
  • [10] Nanoplatforms for targeted molecular imaging in living subjects
    Cai, Weibo
    Chen, Xiaoyuan
    [J]. SMALL, 2007, 3 (11) : 1840 - 1854