Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator

被引:18
作者
Al-Shbeil, Isra [1 ]
Shaba, Timilehin Gideon [2 ]
Catas, Adriana [3 ]
机构
[1] Univ Jordan, Dept Math, Amman 11942, Jordan
[2] Univ Ilorin, Dept Math, Ilorin 240003, Nigeria
[3] Univ Oradea, Dept Math & Comp Sci, 1 Univ St, Oradea 410087, Romania
关键词
Hankel determinant; analytic and bi-univalent functions; subordination; Hohlov operator; q-Chebyshev polynomials; coefficient bounds; Fekete-Szego inequalities; COEFFICIENT; STARLIKE; BOUNDARY;
D O I
10.3390/fractalfract6040186
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The q-derivative and Hohlov operators have seen much use in recent years. First, numerous well-known principles of the q-derivative operator are highlighted and explained in this research. We then build a novel subclass of analytic and bi-univalent functions using the Hohlov operator and certain q-Chebyshev polynomials. A number of coefficient bounds, as well as the Fekete-Szego inequalities and the second Hankel determinant are provided for these newly specified function classes.
引用
收藏
页数:19
相关论文
共 41 条
[1]   ORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE ROGERS-RAMANUJAN CONTINUED-FRACTION [J].
ALSALAM, WA ;
ISMAIL, MEH .
PACIFIC JOURNAL OF MATHEMATICS, 1983, 104 (02) :269-283
[2]  
Altinkaya S., 2017, ASIA PAC J MATH, V4, P90
[3]   Construction of the second Hankel determinant for a new subclass of bi-univalent functions [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) :2876-2884
[4]  
[Anonymous], 1992, Current Topics in Analytic Function Theory
[5]  
Ayinla R.O., 2019, Appl. Math., V10, P1071, DOI 10.4236/am.2019.1012074
[6]  
Brannan D.A., 1980, P NATO ADV STUDY I
[7]  
Brannan D. A., 1986, KFAS Proceedings Series, V31, P70, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[8]   Second Hankel determinant for certain subclasses of bi-univalent functions [J].
Caglar, Murat ;
Deniz, Erhan ;
Srivastava, Hari Mohan .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) :694-706
[9]  
Cigler J., 2012, ARXIV12014703
[10]   Second Hankel determinant for bi-starlike and bi-convex functions of order β [J].
Deniz, Erhan ;
Caglar, Murat ;
Orhan, Halit .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :301-307