Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature

被引:68
作者
Faust, T. [1 ,2 ]
Krenn, P. [1 ,2 ]
Manus, S. [1 ,2 ]
Kotthaus, J. P. [1 ,2 ]
Weig, E. M. [1 ,2 ]
机构
[1] Univ Munich, Ctr NanoSci CeNS, D-80539 Munich, Germany
[2] Univ Munich, Fak Phys, D-80539 Munich, Germany
关键词
QUANTUM GROUND-STATE; MECHANICAL RESONATOR; RADIATION-PRESSURE; SILICON-NITRIDE; OSCILLATOR; MOTION; MICROMIRROR;
D O I
10.1038/ncomms1723
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Following recent insights into energy storage and loss mechanisms in nanoelectromechanical systems (NEMS), nanomechanical resonators with increasingly high quality factors are possible. Consequently, efficient, non-dissipative transduction schemes are required to avoid the dominating influence of coupling losses. Here we present an integrated NEMS transducer based on a microwave cavity dielectrically coupled to an array of doubly clamped pre-stressed silicon nitride beam resonators. This cavity-enhanced detection scheme allows resolving of the resonators' Brownian motion at room temperature while preserving their high mechanical quality factor of 290,000 at 6.6 M MHz. Furthermore, our approach constitutes an 'opto'-mechanical system in which backaction effects of the microwave field are employed to alter the effective damping of the resonators. In particular, cavity-pumped self-oscillation yields a linewidth of only 5 Hz. Thereby, an adjustement-free, all-integrated and self-driven nanoelectromechanical resonator array interfaced by just two microwave connectors is realised, which is potentially useful for applications in sensing and signal processing.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Near-field cavity optomechanics with nanomechanical oscillators [J].
Anetsberger, G. ;
Arcizet, O. ;
Unterreithmeier, Q. P. ;
Riviere, R. ;
Schliesser, A. ;
Weig, E. M. ;
Kotthaus, J. P. ;
Kippenberg, T. J. .
NATURE PHYSICS, 2009, 5 (12) :909-914
[2]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[3]   Passive cooling of a micromechanical oscillator with a resonant electric circuit [J].
Brown, K. R. ;
Britton, J. ;
Epstein, R. J. ;
Chiaverini, J. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (13)
[4]   Laser cooling of a nanomechanical oscillator into its quantum ground state [J].
Chan, Jasper ;
Mayer Alegre, T. P. ;
Safavi-Naeini, Amir H. ;
Hill, Jeff T. ;
Krause, Alex ;
Groeblacher, Simon ;
Aspelmeyer, Markus ;
Painter, Oskar .
NATURE, 2011, 478 (7367) :89-92
[5]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208
[6]   Optomechanical crystals [J].
Eichenfield, Matt ;
Chan, Jasper ;
Camacho, Ryan M. ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 462 (7269) :78-82
[7]   A picogram- and nanometre-scale photonic-crystal optomechanical cavity [J].
Eichenfield, Matt ;
Camacho, Ryan ;
Chan, Jasper ;
Vahala, Kerry J. ;
Painter, Oskar .
NATURE, 2009, 459 (7246) :550-U79
[8]   A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator [J].
Feng, X. L. ;
White, C. J. ;
Hajimiri, A. ;
Roukes, M. L. .
NATURE NANOTECHNOLOGY, 2008, 3 (06) :342-346
[9]   Self-cooling of a micromirror by radiation pressure [J].
Gigan, S. ;
Boehm, H. R. ;
Paternostro, M. ;
Blaser, F. ;
Langer, G. ;
Hertzberg, J. B. ;
Schwab, K. C. ;
Baeuerle, D. ;
Aspelmeyer, M. ;
Zeilinger, A. .
NATURE, 2006, 444 (7115) :67-70
[10]   Excitation, detection, and passive cooling of a micromechanical cantilever using near-field of a microwave resonator [J].
Hao, L. ;
Gallop, J. C. ;
Cox, D. .
APPLIED PHYSICS LETTERS, 2009, 95 (11)