共 111 条
Absorption and photocatalytic degradation of VOCs by perfluorinated ionomeric coating with TiO2 nanopowders for air purification
被引:66
作者:
Sansotera, Maurizio
[1
,2
]
Kheyli, Sina Geran Malek
[1
]
Baggioli, Alberto
[1
,2
]
Bianchi, Claudia L.
[3
]
Pedeferri, Maria Pia
[1
,2
]
Diamanti, Maria Vittoria
[1
,2
]
Navarrini, Walter
[1
,2
]
机构:
[1] Politecn Milan, Dipartimento Chim Mat & Ingn Chim, Via L Mancinelli 7, I-20131 Milan, Italy
[2] INSTM Consorzio Interuniv Nazl Sci & Technol Mat, via G Giusti 9, I-50121 Florence, Italy
[3] Univ Milan, Dipartimento Chim, Via C Golgi 19, I-20133 Milan, Italy
关键词:
Photocatalysis;
Gas phase;
Volatile organic compounds;
Titanium dioxide;
Fluorinated PFSA coating;
VOLATILE ORGANIC-COMPOUNDS;
GAS-PHASE;
TITANIUM-DIOXIDE;
INDOOR ENVIRONMENT;
NAFION MEMBRANES;
WATER;
TOLUENE;
OXIDATION;
PYRIDINE;
METHANOL;
D O I:
10.1016/j.cej.2018.12.136
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
In this work, we propose a transparent multilayered perfluoropolymeric coating as immobilization method for TiO2 nanoparticles, and evaluate its suitability in the gas phase photocatalytic degradation of six different volatile organic compounds. The coating was made of a layer of TiO2-containing perfluorosulfonic acid polymer on a layer of perfluorinated amorphous polymer. The chemical stability of perfluoropolymeric materials to UV radiation and UV-activated TiO2 overcomes the possible degradation of the polymeric immobilization system which is typical of more traditional polymeric coatings. Moreover, the TiO2-containing ionomeric perfluorosulfonic layer worked as selective membrane for pollutants absorption and catalyst preservation, depending on the interactions between the superacidic polar heads of the ionomer and the pollutants, in particular those capable of hydrogen bonding. Gas-phase photocatalytic degradation tests were performed using pentane, methanol, 2-propanol, toluene, dichloromethane and pyridine as reference volatile organic pollutants, thus ranging on different polarity properties. Results indicate performances comparable to other approaches reported in the literature and show a strong influence of both atmospheric conditions (namely, humidity) and pollutant nature - polarity, proticity - on the actual kinetics of photodegradation, also depending on the interactions regulating the affinity between the ionomeric layer of the coating and pollutants. The high potential of the coating in the photodegradation was confirmed by the observed values of the photoabatement rates: all approximatively above 10(-5) s(-1) and maximum for alcohols (1.4x10(-4) and 1.7x10(-4) s(-1) in dry and humid conditions, respectively).
引用
收藏
页码:885 / 896
页数:12
相关论文