SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA

被引:95
作者
Eymard, Robert [1 ]
Guichard, Cindy [2 ]
Herbin, Raphaele [3 ]
机构
[1] Univ Paris Est Marne la Vallee, LAMA CNRS UMR 8050, F-77454 Champs Sur Marne 2, Marne La Vallee, France
[2] IFP Energies Nouvelles, F-92852 Rueil Malmaison, France
[3] Aix Marseille Univ, LATP CNRS UMR 6632, F-13453 Marseille, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 02期
关键词
Porous media; diffusion operator; anisotropy; non conforming meshes; FINITE-VOLUME METHOD; TENSOR COEFFICIENTS; CONVERGENCE; OPERATORS; DISCRETIZATION; APPROXIMATION; EQUATION; GRIDS;
D O I
10.1051/m2an/2011040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
引用
收藏
页码:265 / 290
页数:26
相关论文
共 28 条
[21]   A new finite volume scheme for anisotropic diffusion problems on general grids:: convergence analysis [J].
Eymard, Robert ;
Gallouet, Thierry ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2007, 344 (06) :403-406
[22]   Multiphase Flow in Porous Media Using the VAG Scheme [J].
Eymard, Robert ;
Guichard, Cindy ;
Herbin, Raphaele ;
Masson, Roland .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 :409-417
[23]   A CONTROL VOLUME METHOD TO SOLVE AN ELLIPTIC EQUATION ON A 2-DIMENSIONAL IRREGULAR MESH [J].
FAILLE, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 100 (02) :275-290
[24]  
Herbin R., 2008, FINITE VOLUMES COMPL, P659
[25]   Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes [J].
Hermeline, F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (21-24) :2497-2526
[26]   Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes [J].
Hermeline, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (16-18) :1939-1959
[27]   A finite volume method for approximating 3D diffusion operators on general meshes [J].
Hermeline, F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) :5763-5786
[28]  
Strang G., 1972, MATH FDN FINITE ELEM, P689, DOI DOI 10.1016/B978-0-12-068650-6.50030-7