SMALL-STENCIL 3D SCHEMES FOR DIFFUSIVE FLOWS IN POROUS MEDIA

被引:95
作者
Eymard, Robert [1 ]
Guichard, Cindy [2 ]
Herbin, Raphaele [3 ]
机构
[1] Univ Paris Est Marne la Vallee, LAMA CNRS UMR 8050, F-77454 Champs Sur Marne 2, Marne La Vallee, France
[2] IFP Energies Nouvelles, F-92852 Rueil Malmaison, France
[3] Aix Marseille Univ, LATP CNRS UMR 6632, F-13453 Marseille, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2012年 / 46卷 / 02期
关键词
Porous media; diffusion operator; anisotropy; non conforming meshes; FINITE-VOLUME METHOD; TENSOR COEFFICIENTS; CONVERGENCE; OPERATORS; DISCRETIZATION; APPROXIMATION; EQUATION; GRIDS;
D O I
10.1051/m2an/2011040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some discretization schemes for diffusive flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall into this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes show the efficiency of the new schemes, compared to existing ones.
引用
收藏
页码:265 / 290
页数:26
相关论文
共 28 条
[1]   Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 127 (01) :2-14
[2]   Well index in reservoir simulation for slanted and slightly curved wells in 3D grids [J].
Aavatsmark, I ;
Klausen, RA .
SPE JOURNAL, 2003, 8 (01) :41-48
[3]   A New Finite-Volume Approach to Efficient Discretization on Challenging Grids [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Heimsund, B. -O. ;
Mallison, B. T. ;
Nordbotten, J. M. ;
Qian, E. .
SPE JOURNAL, 2010, 15 (03) :658-669
[4]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[5]  
AGELAS L, 2008, FINITE VOLUMES COMPL, V5, P35
[6]   A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media [J].
Agelas, Leo ;
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :673-676
[7]  
Andreianov B., 2008, FINITE VOLUMES COMPL, VV, P161
[8]   CONVERGENCE OF DISCRETE DUALITY FINITE VOLUME SCHEMES FOR THE CARDIAC BIDOMAIN MODEL [J].
Andreianov, Boris ;
Bendahmane, Mostafa ;
Karlsen, Kenneth Hvistendahl ;
Pierre, Charles .
NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (02) :195-240
[9]   FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUITIES [J].
Boyer, Franck ;
Hubert, Florence .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) :3032-3070
[10]  
BREZZI F, 2008, ESAIM-MATH MODEL NUM, V43, P277