Available Toolkits for CRISPR/CAS Genome Editing in Plants

被引:4
作者
Mikhaylova, E., V [1 ]
Khusnutdinov, E. A. [1 ]
Chemeris, A., V [1 ]
Kuluev, B. R. [1 ]
机构
[1] Russian Acad Sci, Ufa Fed Res Ctr, Inst Biochem & Genet, Ufa, Russia
基金
俄罗斯科学基金会;
关键词
genome editing; CRISPR; Cas9; Cas12a; Cas12b; Csy4; Ec1; 2; geminiviruses; knockout; knock-in; TRANSCRIPTIONAL ACTIVATION; TARGETED MUTAGENESIS; SYSTEM; EFFICIENCY; PECULIARITIES; REPRESSION; VARIANTS; IMPROVE; GENES; RICE;
D O I
10.1134/S1021443722010137
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
At present, CRISPR/Cas genome editing is the most effective and fast method to produce plants with desired traits. Unlike traditional genetic engineering, this method induces precise modifications in target sites of the genome. Therefore, in addition to applied tasks, genome editing is often used for basic investigation of native plant genes. However, the CRISPR/Cas technique has so far been tested in bacterial and animal objects rather than plants. Nevertheless, there are easy-to-use vector systems containing a wide range of elements designed for plant genome editing and regulation of target genes' expression. Researchers should only choose an appropriate system and adapt it to their object and the aim of the experiment. In this paper, opportunities offered by currently available systems for plant genome editing are reviewed in detail.
引用
收藏
页数:14
相关论文
共 89 条
[1]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[2]   CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement [J].
Bandyopadhyay, Anindya ;
Kancharla, Nagesh ;
Javalkote, Vivek S. ;
Dasgupta, Santanu ;
Brutnell, Thomas P. .
FRONTIERS IN PLANT SCIENCE, 2020, 11
[3]  
Begemann M., 2017, Characterization and Validation of a Novel Group of Type V, Class 2 Nucleases for in vivo Genome Editing, DOI DOI 10.1101/192799
[4]   Peculiarities in Creation of Genetic Engineering Constructions for Knock-In Variant of Genome Editing ofArabidopsis thalianaCell Culture [J].
Belavin, P. A. ;
Permyakova, N. V. ;
Zagorskaya, A. A. ;
Marenkova, T. V. ;
Sidorchuk, Yu. V. ;
Uvarova, E. A. ;
Rozov, S. M. ;
Deineko, E. V. .
RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2020, 67 (05) :855-866
[5]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[6]   The CRISPR/Cas9 system for plant genome editing and beyond [J].
Bortesi, Luisa ;
Fischer, Rainer .
BIOTECHNOLOGY ADVANCES, 2015, 33 (01) :41-52
[7]   First-generation genome editing in potato using hairy root transformation [J].
Butler, Nathaniel M. ;
Jansky, Shelley H. ;
Jiang, Jiming .
PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (11) :2201-2209
[8]   Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases [J].
Butler, Nathaniel M. ;
Baltes, Nicholas J. ;
Voytas, Daniel F. ;
Douches, David S. .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[9]   Engineering herbicide resistance via prime editing in rice [J].
Butt, Haroon ;
Rao, Gundra Sivakrishna ;
Sedeek, Khalid ;
Aman, Rashid ;
Kamel, Radwa ;
Mahfouz, Magdy .
PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (12) :2370-2372
[10]   A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants [J].
Cermak, Tomas ;
Curtin, Shaun J. ;
Gil-Humanes, Javier ;
Cegan, Radim ;
Kono, Thomas J. Y. ;
Konecna, Eva ;
Belanto, Joseph J. ;
Starker, Colby G. ;
Mathre, Jade W. ;
Greenstein, Rebecca L. ;
Voytas, Daniel F. .
PLANT CELL, 2017, 29 (06) :1196-1217