32-Channel RF Coil Optimized for Brain and Cervical Spinal Cord at 3 T

被引:39
作者
Cohen-Adad, J. [1 ,2 ]
Mareyam, A. [1 ]
Keil, B. [1 ,2 ]
Polimeni, J. R. [1 ,2 ]
Wald, L. L. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, AA Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[2] Harvard Univ, Sch Med, Boston, MA USA
[3] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
RF coil; phased-array; brain; spinal cord; PHASED-ARRAY; PHYSIOLOGICAL NOISE; HEAD COIL; IN-VIVO; MRI; TESLA; UNCERTAINTY; ECHO; FMRI;
D O I
10.1002/mrm.22906
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Diffusion and functional magnetic resonance imaging of the spinal cord remain challenging due to the small cross-sectional size of the cord and susceptibility-related distortions. Although partially addressable through parallel imaging, few highly parallel array coils have been implemented for the cervical cord. Here, we developed a 32-channel coil that fully covers the brain and c-spine and characterized its performance in comparison with a commercially available head/neck/spine array. Image and temporal signal-to-noise ratio were, respectively, increased by 2x and 1.8x in the cervical cord. Averaged g-factors at 4x acceleration were lowered by 22% in the brain and by 39% in the spinal cord, enabling 1-mm isotropic R = 4 multi-echo magnetization prepared gradient echo of the full brain and c-spine in 3:20 min. Diffusion imaging of the cord at 0.6 x 0.6 x 5 mm(3) resolution and tractography of the full brain and c-spine at 1.7-mm isotropic resolution were feasible without noticeable distortion. Improvements of this nature potentially enhance numerous basic and clinical research studies focused on spinal and supraspinal regions. Magn Reson Med 66:1198-1208, 2011. (C) 2011 Wiley-Liss, Inc.
引用
收藏
页码:1198 / 1208
页数:11
相关论文
共 45 条
[1]   Transmit and receive transmission line arrays for 7 tesla parallel imaging [J].
Adriany, G ;
Van de Moortele, PF ;
Wiesinger, F ;
Moeller, S ;
Strupp, JP ;
Andersen, P ;
Snyder, C ;
Zhang, XL ;
Chen, W ;
Pruessmann, KP ;
Boesiger, P ;
Vaughan, T ;
Ugurbil, K .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (02) :434-445
[2]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[3]  
Bodurka J., 2008, 16 ANN M INT SOC MAG, P1078
[4]   Physiological noise modelling for spinal functional magnetic resonance imaging studies [J].
Brooks, Jonathan C. W. ;
Beckmann, Christian F. ;
Miller, Karla L. ;
Wise, Richard G. ;
Porro, Carlo A. ;
Tracey, Irene ;
Jenkinson, Mark .
NEUROIMAGE, 2008, 39 (02) :680-692
[5]  
Cline HE, 2004, P 12 ANN M ISMRM KYO, P2387
[6]   Detection of multiple pathways in the spinal cord using q-ball imaging [J].
Cohen-Adad, J. ;
Descoteaux, M. ;
Rossignol, S. ;
Hoge, R. D. ;
Deriche, R. ;
Benali, H. .
NEUROIMAGE, 2008, 42 (02) :739-749
[7]   In vivo DTI of the healthy and injured cat spinal cord at high spatial and angular resolution [J].
Cohen-Adad, J. ;
Benali, H. ;
Hoge, R. D. ;
Rossignol, S. .
NEUROIMAGE, 2008, 40 (02) :685-697
[8]   BOLD signal responses to controlled hypercapnia in human spinal cord [J].
Cohen-Adad, J. ;
Gauthier, C. J. ;
Brooks, J. C. W. ;
Slessarev, M. ;
Han, J. ;
Fisher, J. A. ;
Rossignol, S. ;
Hoge, R. D. .
NEUROIMAGE, 2010, 50 (03) :1074-1084
[9]  
COHENADAD J, 2010, P 16 ANN M OHBM BARC, P3694
[10]   Clinical DT-MRI estimation, smoothing, and fiber tracking with log-euclidean metrics [J].
Fillard, Pierre ;
Pennec, Xavier ;
Arsigny, Vincent ;
Ayache, Nicholas .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (11) :1472-1482