Similarity-based probabilistic remaining useful life estimation for an aeroengine under variable operational conditions

被引:8
|
作者
Wang, Cunsong [1 ]
Miao, Xiaodong [1 ]
Zhang, Quanling [1 ]
Bo, Cuimei [1 ]
Zhang, Dengfeng [1 ]
He, Wenmin [1 ]
机构
[1] Nanjing Tech Univ, Inst Intelligent Mfg, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
system-level RUL estimation; variable operational conditions; nonlinear sensor data; multiple source uncertainties; aero-engine; PROGNOSTICS; MODEL; UNCERTAINTY;
D O I
10.1088/1361-6501/ac84f8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
System-level remaining useful life (RUL) estimation is difficult due to multiple degrading components, external disturbances, and variable operational conditions. A similarity-based approach does not rely on health assessment and is more suitable for system-level RUL estimation. However, for practical applications, how to capture effective degradation features from raw data, how to fuse multiple nonlinear sensor data, and how to handle multiple source uncertainties need to be considered. To solve the above challenges, this study focuses on RUL estimation for systems under variable operational conditions. A similarity-based probabilistic RUL estimation strategy is proposed and verified using the NASA aeroengine dataset. First, measurement uncertainty can be addressed. Proper degradation features are extracted by three defined indicators. Subsequently, multiple nonlinear sensor data fusion and unsupervised synthesized health index construction can be realized using the proposed deep autoencoder-based polynomial regression approach. Finally, this strategy can handle the modeling and prediction uncertainties, including providing probabilistic RUL estimation results by well-trained residual-based similarity models. The verification results indicate the effectiveness and feasibility of the proposed strategy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Similarity-based remaining useful life prediction method under varying operational conditions
    Li Q.
    Gao Z.
    Li S.
    Li B.
    Beijing Hangkong Hangtian Daxue Xuebao, 6 (1236-1243): : 1236 - 1243
  • [2] A similarity-based method for remaining useful life prediction based on operational reliability
    Liang Zeming
    Gao Jianmin
    Jiang Hongquan
    Gao Xu
    Gao Zhiyong
    Wang Rongxi
    APPLIED INTELLIGENCE, 2018, 48 (09) : 2983 - 2995
  • [3] Predicting Remaining Useful Life with Similarity-Based Priors
    Soons, Youri
    Dijkman, Remco
    Jilderda, Maurice
    Duivesteijn, Wouter
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVIII, IDA 2020, 2020, 12080 : 483 - 495
  • [4] A Similarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems
    Wang, Tianyi
    Yu, Jianbo
    Siegel, David
    Lee, Jay
    2008 INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (PHM), 2008, : 53 - +
  • [5] A neural network filtering approach for similarity-based remaining useful life estimation
    Bektas, Oguz
    Jones, Jeffrey A.
    Sankararaman, Shankar
    Roychoudhury, Indranil
    Goebel, Kai
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4): : 87 - 103
  • [6] Remaining useful life estimation in heterogeneous fleets working under variable operating conditions
    Al-Dahidi, Sameer
    Di Maio, Francesco
    Baraldi, Piero
    Zio, Enrico
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 156 : 109 - 124
  • [7] Similarity-based prediction method for machinery remaining useful life: A review
    Xue, Bin
    Xu, Huangyang
    Huang, Xing
    Zhu, Ke
    Xu, Zhongbin
    Pei, Hao
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (3-4): : 1501 - 1531
  • [8] Trajectory Similarity-Based Prediction with Information Fusion for Remaining Useful Life
    Wang, Zhongyu
    Tang, Wang
    Pi, Dechang
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2017, 2017, 10585 : 270 - 278
  • [9] An adaptive remaining useful life prediction model for aeroengine based on multi-angle similarity
    Zhou, Zhihao
    Bai, Mingliang
    Long, Zhenhua
    Liu, Jinfu
    Yu, Daren
    MEASUREMENT, 2024, 226
  • [10] High-performance remaining useful life prediction for aeroengine based on combining health states and trajectory similarity
    Peng, Peng
    Li, Yonghua
    Guo, Zhongyi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141