Data-driven staging of genetic frontotemporal dementia using multi-modal MRI

被引:7
|
作者
McCarthy, Jillian [1 ]
Borroni, Barbara [2 ]
Sanchez-Valle, Raquel [3 ]
Moreno, Fermin [4 ,5 ]
Laforce, Robert, Jr. [6 ,7 ]
Graff, Caroline [8 ,9 ]
Synofzik, Matthis [10 ,11 ,12 ]
Galimberti, Daniela [13 ,14 ]
Rowe, James B. [15 ,16 ]
Masellis, Mario [17 ]
Tartaglia, Maria Carmela [18 ]
Finger, Elizabeth [19 ]
Vandenberghe, Rik [20 ,21 ,22 ]
de Mendonca, Alexandre [23 ]
Tagliavini, Fabrizio [24 ]
Santana, Isabel [25 ,26 ]
Butler, Chris [27 ,28 ]
Gerhard, Alex [29 ,30 ,31 ]
Danek, Adrian [32 ]
Levin, Johannes [32 ,33 ,34 ]
Otto, Markus [35 ]
Frisoni, Giovanni [36 ,37 ,38 ,39 ]
Ghidoni, Roberta [40 ]
Sorbi, Sandro [41 ,42 ]
Jiskoot, Lize C. [43 ]
Seelaar, Harro [43 ]
van Swieten, John C. [43 ]
Rohrer, Jonathan D. [44 ]
Iturria-Medina, Yasser [1 ,45 ,46 ]
Ducharme, Simon [1 ,47 ]
机构
[1] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Univ Brescia, Dept Clin & Expt Sci, Ctr Neurodegenerat Disorders, Brescia, Italy
[3] Univ Barcelona, Alzheimers Dis & Other Cognit Disorders Unit, Inst Invest Biomed August Pi & Sunyer, Hosp Clin,Neurol Serv, Barcelona, Spain
[4] Donostia Univ Hosp, Dept Neurol, Cognit Disorders Unit, San Sebastian, Spain
[5] Biodonostia Hlth Res Inst, Neurosci Area, San Sebastian, Spain
[6] Univ Laval, CHU Quebec, Dept Sci Neurol, Clin Interdisciplinaire Memoire, Quebec City, PQ, Canada
[7] Univ Laval, Fac Med, Quebec City, PQ, Canada
[8] Karolinska Univ Hosp Huddinge, Dept Geriatr Med, Stockholm, Sweden
[9] Karolinska Univ Hosp, Unit Hereditary Dementias, Theme Aging, Solna, Sweden
[10] Univ Tubingen, Dept Neurodegenerat Dis, Hertie Inst Clin Brain Res, Tubingen, Germany
[11] Univ Tubingen, Ctr Neurol, Tubingen, Germany
[12] Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[13] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Neurodegenerat Dis Unit, Milan, Italy
[14] Univ Milan, Dino Ferrari Ctr, Dept Biomed Surg & Dent Sci, Milan, Italy
[15] Univ Cambridge, Cambridge Univ Hosp NHS Trust, Dept Clin Neurosci, Cambridge, England
[16] RC Cognit & Brain Sci Unit, Cambridge, England
[17] Univ Toronto, Sunnybrook Res Inst, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[18] Toronto Western Hosp, Tanz Ctr Res Neurodegenerat Dis, Toronto, ON, Canada
[19] Univ Western Ontario, Dept Clin Neurol Sci, London, ON, Canada
[20] Katholieke Univ Leuven, Dept Neurosci, Lab Cognit Neurol, Leuven, Belgium
[21] Univ Hosp Leuven, Neurol Serv, Leuven, Belgium
[22] Katholieke Univ Leuven, Leuven Brain Inst, Leuven, Belgium
[23] Univ Lisbon, Fac Med, Lisbon, Portugal
[24] Fdn Ist Ricovero & Cura Carattere Sci, Ist Neurol Carlo Besta, Milan, Italy
[25] Ctr Hosp & Univ Coimbra, Neurol Dept, Coimbra, Portugal
[26] Univ Coimbra, Ctr Neurosci & Cell Biol, Fac Med, Coimbra, Portugal
[27] Univ Oxford, Dept Clin Neurol, Oxford, England
[28] Imperial Coll London, Dept Brain Sci, London, England
[29] Univ Manchester, Div Neurosci & Expt Psychol, Fac Med Biol & Hlth, Manchester, Lancs, England
[30] Essen Univ Hosp, Dept Geriatr Med, Essen, Germany
[31] Essen Univ Hosp, Dept Nucl Med, Essen, Germany
[32] Ludwig Maximilians Univ Munchen, Munich, Germany
[33] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[34] Munich Cluster Syst Neurol SyNergy, Munich, Germany
[35] Univ Hosp Ulm, Dept Neurol, Ulm, Germany
[36] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, LANE Lab Alzheimers Neuroimaging & Epidemiol, Brescia, Italy
[37] Univ Hosp, Memory Clin, Geneva, Switzerland
[38] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva, Switzerland
[39] Univ Geneva, Geneva, Switzerland
[40] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Mol Markers Lab, Brescia, Italy
[41] Univ Florence, Dept Neurofarba, Florence, Italy
[42] IRCCS Fdn Don Carlo Gnocchi, Florence, Italy
[43] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[44] UCL Inst Neurol, Dementia Res Ctr, Dept Neurodegenerat Dis, London, England
[45] McGill Univ, Montreal Neurol Inst, Neurol & Neurosurg Dept, Montreal, PQ, Canada
[46] McGill Univ, Ludmer Ctr Neuroinformat & Mental Hlth, Montreal, PQ, Canada
[47] McGill Univ, Douglas Mental Hlth Univ Inst, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大创新基金会;
关键词
disease progression; frontotemporal dementia; magnetic resonance imaging; unsupervised machine learning; NEUROFILAMENT LIGHT-CHAIN; GRAY-MATTER ATROPHY; BEHAVIORAL VARIANT; CLINICAL-TRIALS; DIFFUSION; HARMONIZATION; DEGENERATION; BIOMARKER; CRITERIA; GENFI;
D O I
10.1002/hbm.25727
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
引用
收藏
页码:1821 / 1835
页数:15
相关论文
共 50 条
  • [41] Attention driven multi-modal similarity learning
    Gao, Xinjian
    Mu, Tingting
    Goulermas, John Y.
    Wang, Meng
    INFORMATION SCIENCES, 2018, 432 : 530 - 542
  • [42] Data-Driven Spine Detection for Multi-Sequence MRI
    Kottke, Daniel
    Gulamhussene, Gino
    Toennies, Klaus
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 5 - 10
  • [43] Methods of Multi-Modal Data Exploration
    Grosup, Tomas
    ICMR'19: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2019, : 34 - 37
  • [44] SPFUSIONNET: SKETCH SEGMENTATION USING MULTI-MODAL DATA FUSION
    Wang, Fei
    Lin, Shujin
    Wu, Hefeng
    Li, Hanhui
    Wang, Ruomei
    Luo, Xiaonan
    He, Xiangjian
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1654 - 1659
  • [45] Soft multi-modal data fusion
    Coppock, S
    Mazack, L
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 636 - 641
  • [46] Interpretable multi-modal data integration
    Osorio, Daniel
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (01): : 8 - 9
  • [47] Multi-modal data fusion: A description
    Coppock, S
    Mazlack, LJ
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 2, PROCEEDINGS, 2004, 3214 : 1136 - 1142
  • [48] Data-driven criteria for defining SpA using MRI
    Megan Cully
    Nature Reviews Rheumatology, 2013, 9 (2) : 65 - 65
  • [49] A longitudinal multi-modal dataset for dementia monitoring and diagnosis
    Gkoumas, Dimitris
    Wang, Bo
    Tsakalidis, Adam
    Wolters, Maria
    Purver, Matthew
    Zubiaga, Arkaitz
    Liakata, Maria
    LANGUAGE RESOURCES AND EVALUATION, 2024, 58 (03) : 883 - 902
  • [50] Interpretable multi-modal data integration
    Daniel Osorio
    Nature Computational Science, 2022, 2 : 8 - 9