Data-driven staging of genetic frontotemporal dementia using multi-modal MRI

被引:7
|
作者
McCarthy, Jillian [1 ]
Borroni, Barbara [2 ]
Sanchez-Valle, Raquel [3 ]
Moreno, Fermin [4 ,5 ]
Laforce, Robert, Jr. [6 ,7 ]
Graff, Caroline [8 ,9 ]
Synofzik, Matthis [10 ,11 ,12 ]
Galimberti, Daniela [13 ,14 ]
Rowe, James B. [15 ,16 ]
Masellis, Mario [17 ]
Tartaglia, Maria Carmela [18 ]
Finger, Elizabeth [19 ]
Vandenberghe, Rik [20 ,21 ,22 ]
de Mendonca, Alexandre [23 ]
Tagliavini, Fabrizio [24 ]
Santana, Isabel [25 ,26 ]
Butler, Chris [27 ,28 ]
Gerhard, Alex [29 ,30 ,31 ]
Danek, Adrian [32 ]
Levin, Johannes [32 ,33 ,34 ]
Otto, Markus [35 ]
Frisoni, Giovanni [36 ,37 ,38 ,39 ]
Ghidoni, Roberta [40 ]
Sorbi, Sandro [41 ,42 ]
Jiskoot, Lize C. [43 ]
Seelaar, Harro [43 ]
van Swieten, John C. [43 ]
Rohrer, Jonathan D. [44 ]
Iturria-Medina, Yasser [1 ,45 ,46 ]
Ducharme, Simon [1 ,47 ]
机构
[1] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Univ Brescia, Dept Clin & Expt Sci, Ctr Neurodegenerat Disorders, Brescia, Italy
[3] Univ Barcelona, Alzheimers Dis & Other Cognit Disorders Unit, Inst Invest Biomed August Pi & Sunyer, Hosp Clin,Neurol Serv, Barcelona, Spain
[4] Donostia Univ Hosp, Dept Neurol, Cognit Disorders Unit, San Sebastian, Spain
[5] Biodonostia Hlth Res Inst, Neurosci Area, San Sebastian, Spain
[6] Univ Laval, CHU Quebec, Dept Sci Neurol, Clin Interdisciplinaire Memoire, Quebec City, PQ, Canada
[7] Univ Laval, Fac Med, Quebec City, PQ, Canada
[8] Karolinska Univ Hosp Huddinge, Dept Geriatr Med, Stockholm, Sweden
[9] Karolinska Univ Hosp, Unit Hereditary Dementias, Theme Aging, Solna, Sweden
[10] Univ Tubingen, Dept Neurodegenerat Dis, Hertie Inst Clin Brain Res, Tubingen, Germany
[11] Univ Tubingen, Ctr Neurol, Tubingen, Germany
[12] Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[13] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Neurodegenerat Dis Unit, Milan, Italy
[14] Univ Milan, Dino Ferrari Ctr, Dept Biomed Surg & Dent Sci, Milan, Italy
[15] Univ Cambridge, Cambridge Univ Hosp NHS Trust, Dept Clin Neurosci, Cambridge, England
[16] RC Cognit & Brain Sci Unit, Cambridge, England
[17] Univ Toronto, Sunnybrook Res Inst, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[18] Toronto Western Hosp, Tanz Ctr Res Neurodegenerat Dis, Toronto, ON, Canada
[19] Univ Western Ontario, Dept Clin Neurol Sci, London, ON, Canada
[20] Katholieke Univ Leuven, Dept Neurosci, Lab Cognit Neurol, Leuven, Belgium
[21] Univ Hosp Leuven, Neurol Serv, Leuven, Belgium
[22] Katholieke Univ Leuven, Leuven Brain Inst, Leuven, Belgium
[23] Univ Lisbon, Fac Med, Lisbon, Portugal
[24] Fdn Ist Ricovero & Cura Carattere Sci, Ist Neurol Carlo Besta, Milan, Italy
[25] Ctr Hosp & Univ Coimbra, Neurol Dept, Coimbra, Portugal
[26] Univ Coimbra, Ctr Neurosci & Cell Biol, Fac Med, Coimbra, Portugal
[27] Univ Oxford, Dept Clin Neurol, Oxford, England
[28] Imperial Coll London, Dept Brain Sci, London, England
[29] Univ Manchester, Div Neurosci & Expt Psychol, Fac Med Biol & Hlth, Manchester, Lancs, England
[30] Essen Univ Hosp, Dept Geriatr Med, Essen, Germany
[31] Essen Univ Hosp, Dept Nucl Med, Essen, Germany
[32] Ludwig Maximilians Univ Munchen, Munich, Germany
[33] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[34] Munich Cluster Syst Neurol SyNergy, Munich, Germany
[35] Univ Hosp Ulm, Dept Neurol, Ulm, Germany
[36] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, LANE Lab Alzheimers Neuroimaging & Epidemiol, Brescia, Italy
[37] Univ Hosp, Memory Clin, Geneva, Switzerland
[38] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva, Switzerland
[39] Univ Geneva, Geneva, Switzerland
[40] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Mol Markers Lab, Brescia, Italy
[41] Univ Florence, Dept Neurofarba, Florence, Italy
[42] IRCCS Fdn Don Carlo Gnocchi, Florence, Italy
[43] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[44] UCL Inst Neurol, Dementia Res Ctr, Dept Neurodegenerat Dis, London, England
[45] McGill Univ, Montreal Neurol Inst, Neurol & Neurosurg Dept, Montreal, PQ, Canada
[46] McGill Univ, Ludmer Ctr Neuroinformat & Mental Hlth, Montreal, PQ, Canada
[47] McGill Univ, Douglas Mental Hlth Univ Inst, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大创新基金会;
关键词
disease progression; frontotemporal dementia; magnetic resonance imaging; unsupervised machine learning; NEUROFILAMENT LIGHT-CHAIN; GRAY-MATTER ATROPHY; BEHAVIORAL VARIANT; CLINICAL-TRIALS; DIFFUSION; HARMONIZATION; DEGENERATION; BIOMARKER; CRITERIA; GENFI;
D O I
10.1002/hbm.25727
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
引用
收藏
页码:1821 / 1835
页数:15
相关论文
共 50 条
  • [31] Detecting Functional Objects using Multi-Modal Data
    Ellis, Seth T.
    Harrison, Andre V.
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS V, 2023, 12538
  • [32] Using Multi-Modal Imaging To Tease Apart Atypical Dementia Cases
    Chertkow, Howard M.
    Nikelski, Jim
    Leger, Gabriel
    Litwin, Leah
    Whitehead, Victor
    Evans, Alan
    NEUROLOGY, 2010, 74 (09) : A591 - A591
  • [33] MLW-gcForest: a multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data
    Yunyun Dong
    Wenkai Yang
    Jiawen Wang
    Juanjuan Zhao
    Yan Qiang
    Zijuan Zhao
    Ntikurako Guy Fernand Kazihise
    Yanfen Cui
    Xiaotong Yang
    Siyuan Liu
    BMC Bioinformatics, 20
  • [34] MLW-gcForest: a multi-weighted gcForest model towards the staging of lung adenocarcinoma based on multi-modal genetic data
    Dong, Yunyun
    Yang, Wenkai
    Wang, Jiawen
    Zhao, Juanjuan
    Qiang, Yan
    Zhao, Zijuan
    Kazihise, Ntikurako Guy Fernand
    Cui, Yanfen
    Yang, Xiaotong
    Liu, Siyuan
    BMC BIOINFORMATICS, 2019, 20 (01)
  • [35] Object detection in multi-modal images using genetic programming
    Bhanu, B
    Lin, YQ
    APPLIED SOFT COMPUTING, 2004, 4 (02) : 175 - 201
  • [36] Feedback Control for Multi-modal Optimization using Genetic Algorithms
    Shi, Jun
    Mengshoel, Ole J.
    Pal, Dipan K.
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 839 - 846
  • [37] A multi-modal transportation data-driven approach to identify urban functional zones: An exploration based on Hangzhou City, China
    Du, Zhenhong
    Zhang, Xiaoyi
    Li, Wenwen
    Zhang, Feng
    Liu, Renyi
    TRANSACTIONS IN GIS, 2020, 24 (01) : 123 - 141
  • [38] A MULTI-MODAL DATA-DRIVEN DECISION FUSION METHOD FOR PROCESS MONITORING IN METAL POWDER BED FUSION ADDITIVE MANUFACTURING
    Yang, Zhuo
    Kim, Jaehyuk
    Lu, Yan
    Yeung, Ho
    Lane, Brandon
    Jones, Albert
    Ndiaye, Yande
    PROCEEDINGS OF 2022 INTERNATIONAL ADDITIVE MANUFACTURING CONFERENCE, IAM2022, 2022,
  • [39] Splenomegaly Segmentation on Multi-Modal MRI Using Deep Convolutional Networks
    Huo, Yuankai
    Xu, Zhoubing
    Bao, Shunxing
    Bermudez, Camilo
    Moon, Hyeonsoo
    Parvathaneni, Prasanna
    Moyo, Tamara K.
    Savona, Michael R.
    Assad, Albert
    Abramson, Richard G.
    Landman, Bennett A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (05) : 1185 - 1196
  • [40] NOVEL MULTI-MODAL ENDPOINTS UNCOVERED BY RADIOGENOMICS INTEGRATING CT OR MRI DATA
    Korn, R.
    ANNALS OF ONCOLOGY, 2015, 26 : 13 - 13