Data-driven staging of genetic frontotemporal dementia using multi-modal MRI

被引:7
|
作者
McCarthy, Jillian [1 ]
Borroni, Barbara [2 ]
Sanchez-Valle, Raquel [3 ]
Moreno, Fermin [4 ,5 ]
Laforce, Robert, Jr. [6 ,7 ]
Graff, Caroline [8 ,9 ]
Synofzik, Matthis [10 ,11 ,12 ]
Galimberti, Daniela [13 ,14 ]
Rowe, James B. [15 ,16 ]
Masellis, Mario [17 ]
Tartaglia, Maria Carmela [18 ]
Finger, Elizabeth [19 ]
Vandenberghe, Rik [20 ,21 ,22 ]
de Mendonca, Alexandre [23 ]
Tagliavini, Fabrizio [24 ]
Santana, Isabel [25 ,26 ]
Butler, Chris [27 ,28 ]
Gerhard, Alex [29 ,30 ,31 ]
Danek, Adrian [32 ]
Levin, Johannes [32 ,33 ,34 ]
Otto, Markus [35 ]
Frisoni, Giovanni [36 ,37 ,38 ,39 ]
Ghidoni, Roberta [40 ]
Sorbi, Sandro [41 ,42 ]
Jiskoot, Lize C. [43 ]
Seelaar, Harro [43 ]
van Swieten, John C. [43 ]
Rohrer, Jonathan D. [44 ]
Iturria-Medina, Yasser [1 ,45 ,46 ]
Ducharme, Simon [1 ,47 ]
机构
[1] McGill Univ, Montreal Neurol Inst, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Univ Brescia, Dept Clin & Expt Sci, Ctr Neurodegenerat Disorders, Brescia, Italy
[3] Univ Barcelona, Alzheimers Dis & Other Cognit Disorders Unit, Inst Invest Biomed August Pi & Sunyer, Hosp Clin,Neurol Serv, Barcelona, Spain
[4] Donostia Univ Hosp, Dept Neurol, Cognit Disorders Unit, San Sebastian, Spain
[5] Biodonostia Hlth Res Inst, Neurosci Area, San Sebastian, Spain
[6] Univ Laval, CHU Quebec, Dept Sci Neurol, Clin Interdisciplinaire Memoire, Quebec City, PQ, Canada
[7] Univ Laval, Fac Med, Quebec City, PQ, Canada
[8] Karolinska Univ Hosp Huddinge, Dept Geriatr Med, Stockholm, Sweden
[9] Karolinska Univ Hosp, Unit Hereditary Dementias, Theme Aging, Solna, Sweden
[10] Univ Tubingen, Dept Neurodegenerat Dis, Hertie Inst Clin Brain Res, Tubingen, Germany
[11] Univ Tubingen, Ctr Neurol, Tubingen, Germany
[12] Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[13] Fdn IRCCS Ca Granda Osped Maggiore Policlin, Neurodegenerat Dis Unit, Milan, Italy
[14] Univ Milan, Dino Ferrari Ctr, Dept Biomed Surg & Dent Sci, Milan, Italy
[15] Univ Cambridge, Cambridge Univ Hosp NHS Trust, Dept Clin Neurosci, Cambridge, England
[16] RC Cognit & Brain Sci Unit, Cambridge, England
[17] Univ Toronto, Sunnybrook Res Inst, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[18] Toronto Western Hosp, Tanz Ctr Res Neurodegenerat Dis, Toronto, ON, Canada
[19] Univ Western Ontario, Dept Clin Neurol Sci, London, ON, Canada
[20] Katholieke Univ Leuven, Dept Neurosci, Lab Cognit Neurol, Leuven, Belgium
[21] Univ Hosp Leuven, Neurol Serv, Leuven, Belgium
[22] Katholieke Univ Leuven, Leuven Brain Inst, Leuven, Belgium
[23] Univ Lisbon, Fac Med, Lisbon, Portugal
[24] Fdn Ist Ricovero & Cura Carattere Sci, Ist Neurol Carlo Besta, Milan, Italy
[25] Ctr Hosp & Univ Coimbra, Neurol Dept, Coimbra, Portugal
[26] Univ Coimbra, Ctr Neurosci & Cell Biol, Fac Med, Coimbra, Portugal
[27] Univ Oxford, Dept Clin Neurol, Oxford, England
[28] Imperial Coll London, Dept Brain Sci, London, England
[29] Univ Manchester, Div Neurosci & Expt Psychol, Fac Med Biol & Hlth, Manchester, Lancs, England
[30] Essen Univ Hosp, Dept Geriatr Med, Essen, Germany
[31] Essen Univ Hosp, Dept Nucl Med, Essen, Germany
[32] Ludwig Maximilians Univ Munchen, Munich, Germany
[33] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[34] Munich Cluster Syst Neurol SyNergy, Munich, Germany
[35] Univ Hosp Ulm, Dept Neurol, Ulm, Germany
[36] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, LANE Lab Alzheimers Neuroimaging & Epidemiol, Brescia, Italy
[37] Univ Hosp, Memory Clin, Geneva, Switzerland
[38] Univ Hosp, LANVIE Lab Neuroimaging Aging, Geneva, Switzerland
[39] Univ Geneva, Geneva, Switzerland
[40] IRCCS Ist Ctr San Giovanni Dio Fatebenefratelli, Mol Markers Lab, Brescia, Italy
[41] Univ Florence, Dept Neurofarba, Florence, Italy
[42] IRCCS Fdn Don Carlo Gnocchi, Florence, Italy
[43] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[44] UCL Inst Neurol, Dementia Res Ctr, Dept Neurodegenerat Dis, London, England
[45] McGill Univ, Montreal Neurol Inst, Neurol & Neurosurg Dept, Montreal, PQ, Canada
[46] McGill Univ, Ludmer Ctr Neuroinformat & Mental Hlth, Montreal, PQ, Canada
[47] McGill Univ, Douglas Mental Hlth Univ Inst, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大创新基金会;
关键词
disease progression; frontotemporal dementia; magnetic resonance imaging; unsupervised machine learning; NEUROFILAMENT LIGHT-CHAIN; GRAY-MATTER ATROPHY; BEHAVIORAL VARIANT; CLINICAL-TRIALS; DIFFUSION; HARMONIZATION; DEGENERATION; BIOMARKER; CRITERIA; GENFI;
D O I
10.1002/hbm.25727
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
引用
收藏
页码:1821 / 1835
页数:15
相关论文
共 50 条
  • [1] MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia
    Manera, Ana L.
    Dadar, Mahsa
    Van Swieten, John Cornelis
    Borroni, Barbara
    Sanchez-Valle, Raquel
    Moreno, Fermin
    Laforce, Robert, Jr.
    Graff, Caroline
    Synofzik, Matthis
    Galimberti, Daniela
    Rowe, James Benedict
    Masellis, Mario
    Tartaglia, Maria Carmela
    Finger, Elizabeth
    Vandenberghe, Rik
    de Mendonca, Alexandre
    Tagliavini, Fabrizio
    Santana, Isabel
    Butler, Christopher R.
    Gerhard, Alex
    Danek, Adrian
    Levin, Johannes
    Otto, Markus
    Frisoni, Giovanni
    Ghidoni, Roberta
    Sorbi, Sandro
    Rohrer, Jonathan Daniel
    Ducharme, Simon
    Collins, D. Louis
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2021, 92 (06): : 608 - 616
  • [2] A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia
    van der Ende, Emma L.
    Bron, Esther E.
    Poos, Jackie M.
    Jiskoot, Lize C.
    Panman, Jessica L.
    Papma, Janne M.
    Meeter, Lieke H.
    Dopper, Elise G. P.
    Wilke, Carlo
    Synofzik, Matthis
    Heller, Carolin
    Swift, Imogen J.
    Sogorb-Esteve, Aitana
    Bouzigues, Arabella
    Borroni, Barbara
    Sanchez-Valle, Raquel
    Moreno, Fermin
    Graff, Caroline
    Laforce, Robert
    Galimberti, Daniela
    Masellis, Mario
    Tartaglia, Maria Carmela
    Finger, Elizabeth
    Vandenberghe, Rik
    Rowe, James B.
    de Mendonca, Alexandre
    Tagliavini, Fabrizio
    Santana, Isabel
    Ducharme, Simon
    Butler, Christopher R.
    Gerhard, Alexander
    Levin, Johannes
    Danek, Adrian
    Otto, Markus
    Pijnenburg, Yolande A. L.
    Sorbi, Sandro
    Zetterberg, Henrik
    Niessen, Wiro J.
    Rohrer, Jonathan D.
    Klein, Stefan
    van Swieten, John C.
    Venkatraghavan, Vikram
    Seelaar, Harro
    BRAIN, 2022, 145 (05) : 1805 - 1817
  • [3] Data-driven planning of reliable itineraries in multi-modal transit networks
    Redmond, Michael
    Campbell, Ann Melissa
    Ehmke, Jan Fabian
    PUBLIC TRANSPORT, 2020, 12 (01) : 171 - 205
  • [4] Data-driven planning of reliable itineraries in multi-modal transit networks
    Michael Redmond
    Ann Melissa Campbell
    Jan Fabian Ehmke
    Public Transport, 2020, 12 : 171 - 205
  • [5] Determination of an infill well placement using a data-driven multi-modal convolutional neural network
    Chu, Min-gon
    Min, Baehyun
    Kwon, Seoyoon
    Park, Gayoung
    Kim, Sungil
    Nguyen Xuan Huy
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
  • [6] Data-Driven Performance Evaluation Framework for Multi-Modal Public Transport Systems
    Rodriguez Gonzalez, Ana Belen
    Vinagre Diaz, Juan Jose
    Wilby, Mark R.
    Fernandez Pozo, Ruben
    SENSORS, 2022, 22 (01)
  • [7] Exploring emotions in Bach chorales: a multi-modal perceptual and data-driven study
    Parada-Cabaleiro, Emilia
    Batliner, Anton
    Zentner, Marcel
    Schedl, Markus
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (12):
  • [8] A data-driven approach for evaluating multi-modal therapy in traumatic brain injury
    Haefeli, Jenny
    Ferguson, Adam R.
    Bingham, Deborah
    Orr, Adrienne
    Won, Seok Joon
    Lam, Tina I.
    Shi, Jian
    Hawley, Sarah
    Liu, Jialing
    Swanson, Raymond A.
    Massa, Stephen M.
    SCIENTIFIC REPORTS, 2017, 7
  • [9] Deep Multi-Modal Network Based Data-Driven Haptic Textures Modeling
    Joolee, Joolekha Bibi
    Jeon, Seokhee
    2021 IEEE WORLD HAPTICS CONFERENCE (WHC), 2021, : 1140 - 1140
  • [10] A data-driven approach for evaluating multi-modal therapy in traumatic brain injury
    Jenny Haefeli
    Adam R. Ferguson
    Deborah Bingham
    Adrienne Orr
    Seok Joon Won
    Tina I. Lam
    Jian Shi
    Sarah Hawley
    Jialing Liu
    Raymond A. Swanson
    Stephen M. Massa
    Scientific Reports, 7