Quantum Fokker-Planck Master Equation for Continuous Feedback Control

被引:16
作者
Annby-Andersson, Bjorn [1 ,2 ]
Bakhshinezhad, Faraj [1 ,2 ]
Bhattacharyya, Debankur [3 ]
De Sousa, Guilherme [4 ]
Jarzynski, Christopher [3 ]
Samuelsson, Peter [1 ,2 ]
Potts, Patrick P. [1 ,2 ,5 ]
机构
[1] Lund Univ, Phys Dept, Box 118, S-22100 Lund, Sweden
[2] Lund Univ, NanoLund, Box 118, S-22100 Lund, Sweden
[3] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[5] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
REALISTIC PHOTODETECTION; SUPERCONDUCTING QUBITS; THERMODYNAMICS; ENTANGLEMENT; STATE; TRAJECTORIES; REALIZATION; TRANSPORT; DEMON;
D O I
10.1103/PhysRevLett.129.050401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Measurement and feedback control are essential features of quantum science, with applications ranging from quantum technology protocols to information-to-work conversion in quantum thermodynamics. Theoretical descriptions of feedback control are typically given in terms of stochastic equations requiring numerical solutions, or are limited to linear feedback protocols. Here we present a formalism for continuous quantum measurement and feedback, both linear and nonlinear. Our main result is a quantum Fokker-Planck master equation describing the joint dynamics of a quantum system and a detector with finite bandwidth. For fast measurements, we derive a Markovian master equation for the system alone, amenable to analytical treatment. We illustrate our formalism by investigating two basic information engines, one quantum and one classical.
引用
收藏
页数:8
相关论文
共 95 条
[81]   Quantum thermodynamics [J].
Vinjanampathy, Sai ;
Anders, Janet .
CONTEMPORARY PHYSICS, 2016, 57 (04) :545-579
[82]   Stochastic thermodynamics based on incomplete information: generalized Jarzynski equality with measurement errors with or without feedback [J].
Waechtler, Christopher W. ;
Strasberg, Philipp ;
Brandes, Tobias .
NEW JOURNAL OF PHYSICS, 2016, 18
[83]   Quantum trajectories for realistic photodetection: I. General formalism [J].
Warszawski, P ;
Wiseman, HM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (01) :1-14
[84]   Quantum trajectories for realistic photodetection: II. Application and analysis [J].
Warszawski, P ;
Wiseman, HM .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (01) :15-28
[85]   Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing [J].
Wheatley, T. A. ;
Berry, D. W. ;
Yonezawa, H. ;
Nakane, D. ;
Arao, H. ;
Pope, D. T. ;
Ralph, T. C. ;
Wiseman, H. M. ;
Furusawa, A. ;
Huntington, E. H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (09)
[86]  
Wiseman H. M., 2010, Quantum Measurement and Control
[87]   QUANTUM-THEORY OF OPTICAL FEEDBACK VIA HOMODYNE DETECTION [J].
WISEMAN, HM ;
MILBURN, GJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (05) :548-551
[88]   QUANTUM-THEORY OF CONTINUOUS FEEDBACK [J].
WISEMAN, HM .
PHYSICAL REVIEW A, 1994, 49 (03) :2133-2150
[89]  
Xiang GY, 2011, NAT PHOTONICS, V5, P43, DOI [10.1038/nphoton.2010.268, 10.1038/NPHOTON.2010.268]
[90]   A control problem for Gaussian states [J].
Yanagisawa, M ;
Kimura, H .
LEARNING, CONTROL AND HYBRID SYSTEMS, 1999, 241 :294-313