Tutorial: unified 1D inversion of the acoustic reflection response

被引:8
|
作者
Slob, Evert [1 ]
Wapenaar, Kees [1 ]
Treitel, Sven [2 ]
机构
[1] Delft Univ Technol, Dept Geosci & Engn, POB 5048, NL-2600 GA Delft, Netherlands
[2] Tridekon, Tulsa, OK USA
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
acoustic; inversion; numerical study; INTERNAL MULTIPLES; MARCHENKO; WAVES;
D O I
10.1111/1365-2478.12946
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Acoustic inversion in one-dimension gives impedance as a function of travel time. Inverting the reflection response is a linear problem. Recursive methods, from top to bottom or vice versa, are known and use a fundamental wave field that is computed from the reflection response. An integral over the solution to the Marchenko equation, on the other hand, retrieves the impedance at any vertical travel time instant. It is a non-recursive method, but requires the zero-frequency value of the reflection response. These methods use the same fundamental wave field in different ways. Combining the two methods leads to a non-recursive scheme that works with finite-frequency bandwidth. This can be used for target-oriented inversion. When a reflection response is available along a line over a horizontally layered medium, the thickness and wave velocity of any layer can be obtained together with the velocity of an adjacent layer and the density ratio of the two layers. Statistical analysis over 1000 noise realizations shows that the forward recursive method and the Marchenko-type method perform well on computed noisy data.
引用
收藏
页码:1425 / 1442
页数:18
相关论文
共 50 条
  • [21] Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks
    Puzyrev, Vladimir
    Swidinsky, Andrei
    COMPUTERS & GEOSCIENCES, 2021, 149
  • [22] Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion
    Li, Jingnan
    Wang, Shangxu
    Wang, Jingbo
    Dong, Chunhui
    Yuan, Sanyi
    PURE AND APPLIED GEOPHYSICS, 2017, 174 (04) : 1759 - 1778
  • [23] Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion
    Jingnan Li
    Shangxu Wang
    Jingbo Wang
    Chunhui Dong
    Sanyi Yuan
    Pure and Applied Geophysics, 2017, 174 : 1759 - 1778
  • [24] Pitfalls of 1D inversion of small-loop electromagnetic data for detecting man-made objects
    Kang, Seogi
    Seol, Soon Jee
    Chung, Yonghyun
    Kwon, Hyoung-Seok
    JOURNAL OF APPLIED GEOPHYSICS, 2013, 90 : 96 - 109
  • [25] Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies
    Allen, David
    Merrick, Noel
    EXPLORATION GEOPHYSICS, 2007, 38 (01) : 50 - 59
  • [26] Optimizing a layered and laterally constrained 2D inversion of resistivity data using Broyden's update and 1D derivatives
    Christiansen, AV
    Auken, E
    JOURNAL OF APPLIED GEOPHYSICS, 2004, 56 (04) : 247 - 261
  • [27] Absorptive photonic crystals in 1D
    Morozov, G. V.
    Placido, F.
    Sprung, D. W. L.
    JOURNAL OF OPTICS, 2011, 13 (03)
  • [28] Simultaneous Optimization of Hyperparameters and Physical Parameters in 1D Electromagnetic Inversion Using Modified Optimized Particle Swarm Optimization
    Djaja, I. Gede Putu Fadjar Soerya
    Desifatma, Elfitra
    Chaerul, Vitasha Adha
    Mustopa, Enjang Jaenal
    Srigutomo, Wahyu
    IEEE ACCESS, 2025, 13 : 35417 - 35432
  • [29] Conducting 1D site response analyses to capture 2D VS spatial variability effects
    Pretell, Renmin
    Ziotopoulou, Katerina
    Abrahamson, Norman A.
    EARTHQUAKE SPECTRA, 2022, 38 (03) : 2235 - 2259
  • [30] Optical properties of 1D metal nanogratings
    Chernykh, I. A.
    Mamichev, D. A.
    Grishchenko, Yu. V.
    Roddatis, V. V.
    Zanaveskin, M. L.
    Shcherbakov, M. R.
    Fedyanin, A. A.
    Novoselova, E. G.
    Smirnov, I. S.
    Marchenkov, A. N.
    JOURNAL OF SURFACE INVESTIGATION, 2011, 5 (05): : 941 - 944