Automated post-operative brain tumour segmentation: A deep learning model based on transfer learning from pre-operative images

被引:26
作者
Ghaffari, Mina [1 ,2 ]
Samarasinghe, Gihan [2 ,3 ]
Jameson, Michael [3 ]
Aly, Farhannah [3 ,4 ,5 ]
Holloway, Lois [3 ,4 ,5 ]
Chlap, Phillip [2 ,3 ]
Koh, Eng-Siew [3 ,4 ,5 ]
Sowmya, Arcot [2 ]
Oliver, Ruth [1 ]
机构
[1] Macquarie Univ, Engn Sch, Sydney, NSW 2109, Australia
[2] Univ New South Wales, Sch Comp Sci & Engn, Barker St, Kensington, NSW 2052, Australia
[3] Ingham Inst Appl Med Res, 1 Campbell St, Liverpool, NSW 2170, Australia
[4] Liverpool & Macarthur Canc Therapy Ctr, Therry Rd, Campbelltown, NSW 2560, Australia
[5] UNSW, South Western Clin Sch, Liverpool Hosp Locked Bag 7103, Liverpool Bc, NSW 1871, Australia
关键词
Brain tumour segmentation; Multimodal MRI; Deep learning; Densely connected CNN;
D O I
10.1016/j.mri.2021.10.012
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Automated brain tumour segmentation from post-operative images is a clinically relevant yet challenging problem. In this study, an automated method for segmenting brain tumour into its subregions has been developed. The dataset consists of multimodal post-operative brain scans (T1 MRI, post-Gadolinium T1 MRI, and T2FLAIR images) of 15 patients who were treated with post-operative radiation therapy, along with manual annotations of their tumour subregions. A 3D densely-connected U-net was developed for segmentation of brain tumour regions and extensive experiments were conducted to enhance model accuracy. A model was initially developed using the publicly available BraTS dataset consisting of pre-operative brain scans. This model achieved Dice Scores of 0.90, 0.83 and 0.78 for predicting whole tumour, tumour core, and enhancing tumour subregions when tested on BraTS20 blind validation dataset. The acquired knowledge from BraTS was then transferred to the local dataset. For augmentation purpose, the local dataset was registered to a dataset of MRI brain scans of healthy subjects. To improve the robustness of the model and enhance its accuracy, ensemble learning was used to combine the outputs of all the trained models. Even though the size of the dataset is very small, the final model can segment brain tumours with a high Dice Score of 0.83, 0.77 and 0.60 for whole tumour, tumour core and enhancing core respectively.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 50 条
  • [41] Automated Brain Tumor Segmentation and Classification in MRI Using YOLO-Based Deep Learning
    Almufareh, Maram Fahaad
    Imran, Muhammad
    Khan, Abdullah
    Humayun, Mamoona
    Asim, Muhammad
    IEEE ACCESS, 2024, 12 : 16189 - 16207
  • [42] Automated segmentation of pediatric brain tumors based on multi-parametric MRI and deep learning
    Madhogarhia, Rachel
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Ware, Jeffrey B.
    Familiar, Ariana M.
    Vidal, Lorenna
    Bagheri, Sina
    Anderson, Hannah
    Haldar, Debanjan
    Yagoda, Sophie
    Graves, Erin
    Spadola, Michael
    Yan, Rachel
    Dahmane, Nadia
    Sako, Chiharu
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [43] A Novel Approach to Classify Brain Tumor with an Effective Transfer Learning based Deep Learning Model
    Khushi, Hafiz Muhammad Tayyab
    Jaffar, Arfan
    Masood, Tehreem
    Akram, Sheeraz
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2024, 67 : 1 - 18
  • [44] Graph-based deep learning segmentation of EDS spectral images for automated mineral phase analysis
    Juranek, Roman
    Vyravsky, Jakub
    Kolar, Martin
    Motl, David
    Zemcik, Pavel
    COMPUTERS & GEOSCIENCES, 2022, 165
  • [45] Automated Detection of Retinal Detachment Using Deep Learning-Based Segmentation on Ocular Ultrasonography Images
    Caki, Onur
    Guleser, Umit Yasar
    Ozkan, Dilek
    Harmanli, Mehmet
    Cansiz, Selahattin
    Kesim, Cem
    Akcan, Rustu Emre
    Merdzo, Ivan
    Hasanreisoglu, Murat
    Gunduz-Demir, Cigdem
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2025, 14 (02):
  • [46] Towards fully automated deep-learning-based brain tumor segmentation: Is brain extraction still necessary?
    Pacheco, Bruno Machado
    Cassia, Guilherme de Souza e
    Silva, Danilo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [47] Synergic deep learning model-based automated detection and classification of brain intracranial hemorrhage images in wearable networks
    Anupama, C. S. S.
    Sivaram, M.
    Lydia, E. Laxmi
    Gupta, Deepak
    Shankar, K.
    PERSONAL AND UBIQUITOUS COMPUTING, 2020, 26 (1) : 1 - 10
  • [48] Deep learning for segmentation of brain tumors: Can we train with images from different institutions?
    Paredes, David
    Saha, Ashirbani
    Mazurowski, Maciej A.
    MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [49] Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components From Ultrasound Images Using Deep Learning
    Kumar, Viksit
    Webb, Jeremy
    Gregory, Adriana
    Meixner, Duane D.
    Knudsen, John M.
    Callstrom, Matthew
    Fatemi, Mostafa
    Alizad, Azra
    IEEE ACCESS, 2020, 8 : 63482 - 63496
  • [50] Automated segmentation of the opt ic disc from fundus images using an asymmetric deep learning network
    Wang, Lei
    Gu, Juan
    Chen, Yize
    Liang, Yuanbo
    Zhang, Weijie
    Pu, Jiantao
    Chen, Hao
    PATTERN RECOGNITION, 2021, 112