Relaxation methods and coupling procedures

被引:17
作者
Ambroso, A. [4 ]
Chalons, C. [3 ]
Coquel, F. [1 ,2 ]
Godlewski, E. [1 ,2 ]
Lagoutiere, F. [3 ]
Raviart, P. -A. [1 ,2 ]
Seguin, N. [1 ,2 ]
机构
[1] Univ Paris 06, F-75005 Paris, France
[2] CNRS, UMR 7598, LJLL, F-75005 Paris, France
[3] Univ Paris Diderot Paris 7, UMR 7598, LJLL, F-75005 Paris, France
[4] CEA Saclay, DEN DM2S SFME, F-91191 Gif Sur Yvette, France
关键词
hyperbolic system; coupling; relaxation; finite volume methods; Riemann solver;
D O I
10.1002/fld.1680
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper Studies a global relaxation method to ensure the conservative coupling at a fixed interface of two Euler systems with different pressure laws. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:1123 / 1129
页数:7
相关论文
共 10 条
[1]  
AMBROSO A, 2007, GLOBAL RELAXATION SO
[2]  
AMBROSO A, 2007, MATH COMPUTATION
[3]  
Ambroso A., 2007, INT J FINITE, V4, P1
[4]  
AMBROSO A, 2007, HYP2006 P
[5]   Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes [J].
Chalons, C ;
Coquel, F .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :451-478
[6]  
CHALONS C, RELAXATION APPROXIMA
[7]  
Coquel F, 2001, GODUNOV METHODS: THEORY AND APPLICATIONS, P179
[8]   BOUNDARY-CONDITIONS FOR NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS [J].
DUBOIS, F ;
LEFLOCH, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 71 (01) :93-122
[9]   The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems [J].
Godlewski, E ;
Le Thanh, KC ;
Raviart, PA .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (04) :649-692
[10]   NONLINEAR RESONANCE IN SYSTEMS OF CONSERVATION-LAWS [J].
ISAACSON, E ;
TEMPLE, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (05) :1260-1278