Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries

被引:68
作者
He, Shunli [1 ,4 ]
Zhao, Junmei [1 ,3 ,4 ]
Rong, Xiaohui [2 ]
Xu, Chunliu [1 ]
Zhang, Qiangqiang [2 ]
Shen, Xing [1 ,4 ]
Qi, Xingguo [2 ]
Li, Yuqi [2 ]
Li, Xinyan [2 ]
Niu, Yaoshen [2 ]
Li, Xiaowei [1 ,4 ]
Han, Shuai [2 ]
Gu, Lin [2 ]
Liu, Huizhou [1 ]
Hu, Yong-Sheng [2 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, CAS Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Key Lab Renewable Energy,Beijing Key Lab New Ener, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Innovat Acad Green Manufacture, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Solvent-free; Mechanochemical protocol; Prussian white; Phase evolution; Interstitial water; SUPERIOR CATHODE; BLUE ANALOGS; CHALLENGES;
D O I
10.1016/j.cej.2021.131083
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Prussian blue analogs (PBAs) with rigid open framework are promising low-cost and easily prepared cathodes for Na-ion batteries. However, their electrochemical performances are hindered from the crystal vacancies and interstitial water in a traditional aqueous co-precipitation process. Herein, we explore a solvent-free mechanochemical protocol to prepare a monoclinic Na1.94Mn[Fe0.99(CN)6]0.95.0.05.1.92H2O via regulating the crystal water in precursors. The interstitial water of NaMHCF can be further reduced through increasing the drying temperature. Ex-situ XRD confirms that the monoclinic phase transformed to the rhombohedral structure during the first cycle, and a highly reversible multi-phase evolution among rhombohedral, cubic, and Na-poor phase upon Na+ (de)intercalations occurred from the second cycle on. Finally, it delivers a specific capacity of 168.8 mA h g-1 with a stable average voltage of 3.44 V at 10 mA g-1, showing ultra-high rate capability (127 mA h g-1 at 2000 mA g-1) and cycling stability (87.6% capacity retention after 100 cycles at 100 mA g-1) for half cells. For the full cell of NaMHCF/NaTi2(PO4)3, it can deliver an ultra-stable cycle performance, retaining 84% capacity after 500 cycles at 100 mA g-1. Our work provides a facile avenue to prepare monoclinic NaMHCF with low water and vacancies for high-performance Na-ion batteries.
引用
收藏
页数:9
相关论文
共 42 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Selective Control of Composition in Prussian White for Enhanced Material Properties [J].
Brant, William R. ;
Mogensen, Ronnie ;
Colbin, Simon ;
Ojwang, Dickson O. ;
Schmid, Siegbert ;
Haggstrom, Lennart ;
Ericsson, Tore ;
Jaworski, Aleksander ;
Pell, Andrew J. ;
Younesi, Reza .
CHEMISTRY OF MATERIALS, 2019, 31 (18) :7203-7211
[3]   Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion [J].
Chen, Junsheng ;
Wei, Li ;
Mahmood, Asif ;
Pei, Zengxia ;
Zhou, Zheng ;
Chen, Xuncai ;
Chen, Yuan .
ENERGY STORAGE MATERIALS, 2020, 25 :585-612
[4]   Hierarchical Hollow Prussian Blue Rods Synthesized via Self-Sacrifice Template as Cathode for High Performance Sodium Ion Battery [J].
Feng, Fan ;
Chen, Suli ;
Liao, Xiao-Zhen ;
Ma, Zi-Feng .
SMALL METHODS, 2019, 3 (04)
[5]   Recent developments of Na4M3(PO4)2(P2O7) as the cathode material for alkaline-ion rechargeable batteries: challenges and outlook [J].
Gezovic, Aleksandra ;
Vujkovic, Milica J. ;
Milovic, Milos ;
Grudic, Veselinka ;
Dominko, Robert ;
Mentus, Slavko .
ENERGY STORAGE MATERIALS, 2021, 37 :243-273
[6]   Ball-milling synthesis of ultrafine NayFexMn1-x[Fe(CN)6] as high-performance cathode in sodium-ion batteries [J].
Gong, Wenzhe ;
Zeng, Rui ;
Su, Shang ;
Wan, Min ;
Rao, Zhixiang ;
Xue, Lihong ;
Zhang, Wuxing .
JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (12)
[7]   Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage [J].
Gur, Turgut M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2696-2767
[8]   A New Emerging Technology: Na-Ion Batteries [J].
Hu, Yong-Sheng ;
Komaba, Shinichi ;
Forsyth, Maria ;
Johnson, Christopher ;
Rojo, Teofilo .
SMALL METHODS, 2019, 3 (04)
[9]   A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries [J].
Huang, Yongxin ;
Xie, Man ;
Wang, Ziheng ;
Jiang, Ying ;
Yao, Ying ;
Li, Shuaijie ;
Li, Zehua ;
Li, Li ;
Wu, Feng ;
Chen, Renjie .
SMALL, 2018, 14 (28)
[10]   Prussian Blue Analogs as Battery Materials [J].
Hurlbutt, Kevin ;
Wheeler, Samuel ;
Capone, Isaac ;
Pasta, Mauro .
JOULE, 2018, 2 (10) :1950-1960