Oriented layered assemblies of graphene nanosheets/Fe3O4 nanoparticles as a superior anode material for lithium ion batteries

被引:21
作者
Jeong, Hee-Sung [1 ,2 ]
Kim, Hyungsub [2 ]
Jo, Kyoung-Il [2 ]
Jang, Jiwon [1 ]
Choi, Jae-Hak [1 ]
Koo, Jaseung [1 ]
机构
[1] Chungnam Natl Univ, Dept Organ Mat Engn, Daejeon 34134, South Korea
[2] KAERI, Neutron Sci Div, Daejeon 34057, South Korea
基金
新加坡国家研究基金会;
关键词
Electrode materials; Graphene oxide nanosheets; Iron oxide nanoparticles; Langmuir-Schaefer deposition; Lithium ion batteries; REDUCED GRAPHENE; ELECTRODE MATERIALS; OXIDE; PERFORMANCE; COMPOSITES; HYBRIDS; LIGHT; FILMS;
D O I
10.1016/j.apsusc.2019.144416
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of more effective electrodes for lithium ion batteries requires increasing the specific surface area and improving the reversible capacity of the materials. We prepared a hybrid multilayer film consisting of graphene oxide (GO) nanosheets and iron oxide (Fe3O4) nanoparticles assembled using the Langmuir-Schaefer (LS) technique. The GO-Fe3O4 hybrid monolayer is formed by ligand exchange between GO suspended in the subphase and oleic acid-coated Fe3O4 nanoparticles dispersed at the liquid-gas interface. Transmission electron microscopy (TEM) and grazing incidence small angle X-ray scattering (GISAXS) results indicate that the GO-Fe3O4 composite monolayer at the interface possesses closely packed hexagonal structure of the Fe3O4 nanoparticles with high coverage upon monolayer compression. The multilayer GO-Fe3O4 hybrid materials were prepared by repeated LS deposition, exhibiting high reversible capacity (similar to 600 mAh g(-1)) and superior cycle stability over 1000 cycles.
引用
收藏
页数:5
相关论文
共 42 条
[1]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[2]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[3]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[4]   Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers [J].
Dong, Zelin ;
Jiang, Changcheng ;
Cheng, Huhu ;
Zhao, Yang ;
Shi, Gaoquan ;
Jiang, Lan ;
Qu, Liangti .
ADVANCED MATERIALS, 2012, 24 (14) :1856-1861
[5]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[6]   Graphene for batteries, supercapacitors and beyond [J].
El-Kady, Maher F. ;
Shao, Yuanlong ;
Kaner, Richard B. .
NATURE REVIEWS MATERIALS, 2016, 1 (07)
[7]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[10]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398