Artificial intelligence in the detection of skin cancer

被引:36
作者
Beltrami, Eric J. [1 ]
Brown, Alistair C. [2 ]
Salmon, Paul J. M. [2 ]
Leffell, David J. [3 ]
Ko, Justin M. [4 ]
Grant-Kels, Jane M. [5 ,6 ]
机构
[1] Univ Connecticut, Sch Med, Farmington, CT USA
[2] SkinCentre, Dermatol Surg Unit, Wellington, New Zealand
[3] Yale Sch Med, Dept Dermatol, New Haven, CT USA
[4] Stanford Med, Dept Dermatol, Stanford, CA USA
[5] Univ Connecticut, Dept Dermatol, Sch Med, 21 South Rd, Farmington, CT 06032 USA
[6] Univ Florida, Coll Med, Gainesville, FL USA
关键词
artificial intelligence; clinical practice; diagnosis; health care dollars; machine learning; neural networks; skin cancer; technology;
D O I
10.1016/j.jaad.2022.08.028
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Recent advances in artificial intelligence (AI) in dermatology have demonstrated the potential to improve the accuracy of skin cancer detection. These capabilities may augment current diagnostic processes and improve the approach to the management of skin cancer. To explain this technology, we discuss fundamental terminology, potential benefits, and limitations of AI, and commercial applications relevant to dermatologists. A clear understanding of the technology may help to reduce physician concerns about AI and promote its use in the clinical setting. Ultimately, the development and validation of AI technologies, their approval by regulatory agencies, and widespread adoption by dermatologists and other clinicians may enhance patient care. Technology-augmented detection of skin cancer has the potential to improve quality of life, reduce health care costs by reducing unnecessary procedures, and promote greater access to high-quality skin assessment. Dermatologists play a critical role in the responsible development and deployment of AI capabilities applied to skin cancer.
引用
收藏
页码:1336 / 1342
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 2013, NEW YORK TIMES, P7
[2]   Artificial intelligence for dermatopathology: Current trends and the road ahead [J].
Chen, Simon B. ;
Novoa, Roberto A. .
SEMINARS IN DIAGNOSTIC PATHOLOGY, 2022, 39 (04) :298-304
[3]   Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma [J].
Chuchu, Naomi ;
Takwoingi, Yemisi ;
Dinnes, Jacqueline ;
Matin, Rubeta N. ;
Bassett, Oliver ;
FMoreau, Jacqueline ;
Bayliss, Susan E. ;
Davenport, Clare ;
Godfrey, Kathie ;
O'Connell, Susan ;
Jain, Abhilash ;
Walter, Fiona M. ;
Deeks, Jonathan J. ;
Williams, Hywel C. ;
Abbott, Rachel ;
Aldridge, Ben ;
Bassett, Oliver ;
Chan, Sue Ann ;
Durack, Alana ;
Fawzy, Monica ;
Gulati, Abha ;
Moreau, Jacqui ;
Patel, Lopa ;
Saleh, Daniel ;
Thompson, David ;
Wong, Kai Yuen ;
di Ruffano, Lavinia Ferrante ;
Johnston, Louise ;
Jain, Abhilash ;
Walter, Fiona ;
Bowling, Jonathan ;
Cheung, Seau Tak ;
Fleming, Colin ;
Gardiner, Matthew ;
Jain, Abhilash ;
O'Connell, Susan ;
Lawton, Pat ;
Lear, John ;
Leeflang, Mariska ;
Motley, Richard ;
Nathan, Paul ;
Newton-Bishop, Julia ;
Payne, Miranda ;
Robinson, Rachael ;
Rodwell, Simon ;
Schofield, Julia ;
Shroff, Neil ;
Tehrani, Hamid ;
Traill, Zoe ;
Walter, Fiona .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (12)
[4]   Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology CLEAR Derm Consensus Guidelines From the International Skin Imaging Collaboration Artificial Intelligence Working Group [J].
Daneshjou, Roxana ;
Barata, Catarina ;
Betz-Stablein, Brigid ;
Celebi, M. Emre ;
Codella, Noel ;
Combalia, Marc ;
Guitera, Pascale ;
Gutman, David ;
Halpern, Allan ;
Helba, Brian ;
Kittler, Harald ;
Kose, Kivanc ;
Liopyris, Konstantinos ;
Malvehy, Josep ;
Seog, Han Seung ;
Soyer, H. Peter ;
Tkaczyk, Eric R. ;
Tschandl, Philipp ;
Rotemberg, Veronica .
JAMA DERMATOLOGY, 2022, 158 (01) :90-96
[5]   Review of Machine Learning in Predicting Dermatological Outcomes [J].
Du, Amy X. ;
Emam, Sepideh ;
Gniadecki, Robert .
FRONTIERS IN MEDICINE, 2020, 7
[6]  
Emerson RW, 1971, COLLECTED WORKS RW E, P132
[7]   Artificial Intelligence Applications in Dermatology: Where Do We Stand? [J].
Gomolin, Arieh ;
Netchiporouk, Elena ;
Gniadecki, Robert ;
Litvinov, Ivan V. .
FRONTIERS IN MEDICINE, 2020, 7
[8]   Bias in, bias out: Underreporting and underrepresentation of diverse skin types in machine learning research for skin cancer detection- A scoping review [J].
Guo, Lisa N. ;
Lee, Michelle S. ;
Kassamali, Bina ;
Mita, Carol ;
Nambudiri, Vinod E. .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2022, 87 (01) :157-159
[9]   Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective [J].
Jutzi, Tanja B. ;
Krieghoff-Henning, Eva, I ;
Holland-Letz, Tim ;
Utikal, Jochen Sven ;
Hauschild, Axel ;
Schadendorf, Dirk ;
Sondermann, Wiebke ;
Froehling, Stefan ;
Hekler, Achim ;
Schmitt, Max ;
Maron, Roman C. ;
Brinker, Titus J. .
FRONTIERS IN MEDICINE, 2020, 7
[10]   Commentary: Position statement on augmented intelligence (AuI) [J].
Kovarik, Carrie ;
Lee, Ivy ;
Ko, Justin .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2019, 81 (04) :998-1000