Weak KAM theory for a weakly coupled system of Hamilton-Jacobi equations

被引:4
作者
Figalli, Alessio [1 ]
Gomes, Diogo [2 ]
Marcon, Diego [3 ]
机构
[1] Univ Texas Austin, Dept Math, 1 Univ Stn,C1200, Austin, TX 78712 USA
[2] KAUST, CEMSE Div, Thuwal 239556900, Saudi Arabia
[3] Univ Fed Rio Grande do Sul, Inst Matemat & Estat, BR-91509900 Porto Alegre, RS, Brazil
关键词
LARGE-TIME BEHAVIOR; DYNAMICAL-APPROACH;
D O I
10.1007/s00526-016-1016-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Here, we extend the weak KAM and Aubry-Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton-Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi's weak KAM theorem, and describe the asymptotic limit of the generalized Lax-Oleinik semigroup.
引用
收藏
页数:32
相关论文
共 22 条
  • [1] [Anonymous], 2004, PROGR NONLINEAR DIFF
  • [2] Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
  • [3] Belbas S.A., 1981, 1981 20 IEEE C DEC C, V20, P1380
  • [4] A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians
    Cagnetti, Filippo
    Gomes, Diogo
    Mitake, Hiroyoshi
    Tran, Hung V.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (01): : 183 - 200
  • [5] Large time behavior of weakly coupled systems of first-order Hamilton-Jacobi equations
    Camilli, Fabio
    Ley, Olivier
    Loreti, Paola
    Vinh Duc Nguyen
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (06): : 719 - 749
  • [6] Capuzzo D. I., 1984, SIAM J CONTROL OPTIM, V22, P143
  • [7] Clarke F.H., 1989, Methods of dynamic and nonsmooth optimization, V57
  • [8] A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations
    Davini, Andrea
    Siconolfi, Antonio
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (02) : 478 - 502
  • [9] AUBRY SETS FOR WEAKLY COUPLED SYSTEMS OF HAMILTON-JACOBI EQUATIONS
    Davini, Andrea
    Zavidovique, Maxime
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3361 - 3389
  • [10] ON A SYSTEM OF 1ST-ORDER QUASI-VARIATIONAL INEQUALITIES CONNECTED WITH THE OPTIMAL SWITCHING PROBLEM
    DOLCETTA, IC
    MATZEU, M
    MENALDI, JL
    [J]. SYSTEMS & CONTROL LETTERS, 1983, 3 (02) : 113 - 116