Special functions for heat kernel expansion

被引:8
作者
Ivanov, A., V [1 ,2 ]
Kharuk, N., V [1 ,3 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, 27 Fontanka, St Petersburg 191023, Russia
[2] Leonhard Euler Int Math Inst, 10 Pesochnaya Nab, St Petersburg 197022, Russia
[3] ITMO Univ, St Petersburg 197101, Russia
关键词
COVARIANT DERIVATIVE REGULARIZATION; GAUGE;
D O I
10.1140/epjp/s13360-022-03176-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study an asymptotic expansion of the heat kernel for a Laplace operator on a smooth Riemannian manifold without a boundary at enough small values of the proper time. The Seeley-DeWitt coefficients of this decomposition satisfy a set of recurrence relations, which we use to construct two function families of a special kind. Using these functions, we study the expansion of a local heat kernel for the inverse Laplace operator. We show that the new functions have some important properties. For example, we can consider the Laplace operator on the function set as a shift one. Also, we describe various applications useful in theoretical physics and, in particular, we find a decomposition of local Green's functions near the diagonal in terms of new functions.
引用
收藏
页数:19
相关论文
共 37 条
[1]   Nontopological fractional fermion number in the Jackiw-Rossi model [J].
Almeida, Caio ;
Alonso-Izquierdo, Alberto ;
Fresneda, Rodrigo ;
Mateos Guilarte, Juan ;
Vassilevich, Dmitri .
PHYSICAL REVIEW D, 2021, 103 (12)
[2]   Soliton fermionic number from the heat kernel expansion [J].
Alonso-Izquierdo, A. ;
Fresneda, Rodrigo ;
Mateos Guilarte, J. ;
Vassilevich, D. .
EUROPEAN PHYSICAL JOURNAL C, 2019, 79 (06)
[3]  
[Anonymous], 1967, Singular Integrals
[4]  
[Anonymous], 2021, J MATH SCI-U TOKYO, V257, P526
[5]  
[Anonymous], 1937, Sow. Phys.
[6]  
[Anonymous], 1954, Tables of Integral Transforms
[7]   GEOMETRIC REGULARIZATION OF GAUGE-THEORIES [J].
ASOREY, M ;
FALCETO, F .
NUCLEAR PHYSICS B, 1989, 327 (02) :427-460
[8]  
Avramidi I. G., 2000, Heat Kernel and Quantum Gravity, V64
[9]   Higher covariant derivative regularization revisited [J].
Bakeyev, TD ;
Slavnov, AA .
MODERN PHYSICS LETTERS A, 1996, 11 (19) :1539-1554
[10]  
Barvinsky A. O., 2022, PHYS REV D, DOI DOI 10.1103/PHYSREVD.105.065013