Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function

被引:0
作者
Mehmood, Sajid [1 ]
Farid, Ghulam [2 ]
机构
[1] Govt Boys Primary Sch Sherani, Hazro, Attock, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2021年 / 66卷 / 04期
关键词
Convex functions; exponentially m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; fractional integral operators; Mittag-Leffler function; MITTAG-LEFFLER FUNCTION; HERMITE-HADAMARD;
D O I
10.24193/subbmath.2021.4.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fejer-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function. Exponentially m-convexity is utilized to establish these inequalities. By fixing parameters involved in the Mittag-Leffler function Hadamard and the Fejer-Hadamard inequalities for various well known fractional integral operators can be obtained.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [31] Hermite-Hadamard-Fejer type inequalities via fractional integral of a function concerning another function
    Baleanu, Dumitru
    Samraiz, Muhammad
    Perveen, Zahida
    Iqbal, Sajid
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    AIMS MATHEMATICS, 2021, 6 (05): : 4280 - 4295
  • [32] Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals
    Abbas G.
    Farid G.
    The Journal of Analysis, 2017, 25 (1) : 107 - 119
  • [33] Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function
    Rashid, Saima
    Safdar, Farhat
    Akdemir, Ahmet Ocak
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [34] Hermite-Hadamard Inequalities for Generalized (m - F)- Convex Function in the Framework of Local Fractional Integrals
    Razzaq, Arslan
    Javed, Tram
    Napoles, Juan E., V
    Gonzalez, Francisco Martinez
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2024, 51 (01): : 198 - 222
  • [35] Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function
    Saima Rashid
    Farhat Safdar
    Ahmet Ocak Akdemir
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Journal of Inequalities and Applications, 2019
  • [36] Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators
    Mehreen, Naila
    Anwar, Matloob
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 230 - 240
  • [37] ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS
    Micherda, Bartosz
    Rajba, Teresa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04): : 931 - 940
  • [38] Inequalities of Bermite-Hadamard-Fejer type for convex functions and Lipschitzian functions
    Yang, GS
    Tseng, KL
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03): : 433 - 440
  • [39] New Hermite-Hadamard-Fejer type inequalities for (η1, η2)-convex functions via fractional calculus
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    SCIENCEASIA, 2020, 46 (01): : 102 - 108
  • [40] Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function
    Abbas, G.
    Farid, G.
    COGENT MATHEMATICS, 2016, 3