Fractional Hadamard and Fejer-Hadamard inequalities for exponentially m-convex function

被引:0
|
作者
Mehmood, Sajid [1 ]
Farid, Ghulam [2 ]
机构
[1] Govt Boys Primary Sch Sherani, Hazro, Attock, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Pakistan
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2021年 / 66卷 / 04期
关键词
Convex functions; exponentially m-convex functions; Hadamard inequality; Fejer-Hadamard inequality; fractional integral operators; Mittag-Leffler function; MITTAG-LEFFLER FUNCTION; HERMITE-HADAMARD;
D O I
10.24193/subbmath.2021.4.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fractional integral operators play a vital role in the advancement of mathematical inequalities. The aim of this paper is to present the Hadamard and the Fejer-Hadamard inequalities for generalized fractional integral operators containing Mittag-Leffler function. Exponentially m-convexity is utilized to establish these inequalities. By fixing parameters involved in the Mittag-Leffler function Hadamard and the Fejer-Hadamard inequalities for various well known fractional integral operators can be obtained.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 50 条
  • [21] Generalization of some fractional versions of Hadamard inequalities via exponentially (α, h - m)-convex functions
    Lv, Yu-Pei
    Farid, Ghulam
    Yasmeen, Hafsa
    Nazeer, Waqas
    Jung, Chahn Yong
    AIMS MATHEMATICS, 2021, 6 (08): : 8978 - 8999
  • [22] A Note on Hermite-Hadamard-Fejer Type Inequalities for Functions Whose n-th Derivatives Are m-Convex or (a,m)-Convex Functions
    Kovac, Sanja
    AXIOMS, 2022, 11 (01)
  • [23] Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals
    Naila Mehreen
    Matloob Anwar
    Journal of Inequalities and Applications, 2020
  • [24] Fractional Hermite-Hadamard-Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Kashuri, Artion
    SYMMETRY-BASEL, 2020, 12 (09):
  • [25] Further generalizations of Hadamard and Fejér–Hadamard fractional inequalities and error estimates
    Yongsheng Rao
    Muhammad Yussouf
    Ghulam Farid
    Josip Pečarić
    Iskander Tlili
    Advances in Difference Equations, 2020
  • [26] Riemann-Liouville Fractional Versions of Hadamard inequality for Strongly m-Convex Functions
    Farid, Ghulam
    Akbar, Saira Bano
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    Mishra, Vishnu Narayan
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [27] New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions
    Xiaoli Qiang
    Ghulam Farid
    Muhammad Yussouf
    Khuram Ali Khan
    Atiq Ur Rahman
    Journal of Inequalities and Applications, 2020
  • [28] Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via Fractional Integrals
    Kunt, Mehmet
    Iscan, Imdat
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2079 - 2089
  • [29] Hermite-Hadamard and Hermite-Hadamard-Fejer Type Inequalities Involving Fractional Integral Operators
    Set, Erhan
    Akdemir, Ahmet Ocak
    Alan, Emrullah Aykan
    FILOMAT, 2019, 33 (08) : 2367 - 2380
  • [30] ON FEJER-HERMITE-HADAMARD INEQUALITIES FOR FUNCTIONS INVOLVING FRACTIONAL INTEGRALS
    Mehmood, Sikander
    Zafar, Fiza
    Furkan, Hasan
    Yasmin, Nusrat
    Akdemir, Ahmet Ocak
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 279 - 299