Electrospun porous carbon nanofiber@MoS2 core/sheath fiber membranes as highly flexible and binder-free anodes for lithium-ion batteries

被引:171
作者
Miao, Yue-E [1 ]
Huang, Yunpeng [1 ]
Zhang, Longsheng [1 ]
Fan, Wei [1 ]
Lai, Feili [1 ]
Liu, Tianxi [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
MOLYBDENUM-DISULFIDE; ELECTROCHEMICAL PERFORMANCE; MOS2; NANOSHEETS; ENERGY-STORAGE; SUPERIOR ANODE; HIGH-CAPACITY; NANOTUBES; GROWTH; NANOPARTICLES; ARCHITECTURES;
D O I
10.1039/c5nr02711j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Self-standing membranes of porous carbon nanofiber (PCNF)@MoS2 core/sheath fibers have been facilely obtained through a combination of electrospinning, high-temperature carbonization and the solvothermal reaction. PCNF fibers with porous channels are used as building blocks for the construction of hierarchical PCNF@MoS2 composites where thin MoS2 nanosheets are uniformly distributed on the PCNF surface. Thus, a three-dimensional open structure is formed, which provides a highly conductive pathway for rapid charge-transfer reactions, as well as greatly improving the surface active sites of MoS2 for fast lithiation/delithiation of Li+ ions. The highly flexible PCNF@MoS2 composite membrane electrode exhibits synergistically improved electrochemical performance with a high specific capacity of 954 mA h g(-1) upon the initial discharge, a high rate capability of 475 mA h g(-1) even at a high current density of 1 A g(-1), and good cycling stability with almost 100% retention after 50 cycles, indicating its potential application as a binder-free anode for high-performance lithium-ion batteries.
引用
收藏
页码:11093 / 11101
页数:9
相关论文
共 52 条
  • [1] MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries
    Bindumadhavan, Kartick
    Srivastava, Suneel Kumar
    Mahanty, Sourindra
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (18) : 1823 - 1825
  • [2] Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries
    Bulusheva, L. G.
    Okotrub, A. V.
    Kurenya, A. G.
    Zhang, Hongkun
    Zhang, Huijuan
    Chen, Xiaohong
    Song, Huaihe
    [J]. CARBON, 2011, 49 (12) : 4013 - 4023
  • [3] Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries
    Cao, Xiehong
    Shi, Yumeng
    Shi, Wenhui
    Rui, Xianhong
    Yan, Qingyu
    Kong, Jing
    Zhang, Hua
    [J]. SMALL, 2013, 9 (20) : 3433 - 3438
  • [4] L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries
    Chang, Kun
    Chen, Weixiang
    [J]. ACS NANO, 2011, 5 (06) : 4720 - 4728
  • [5] Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries
    Chen, Minghua
    Liu, Jilei
    Chao, Dongliang
    Wang, Jin
    Yin, Jinghua
    Lin, Jianyi
    Fan, Hong Jin
    Shen, Ze Xiang
    [J]. NANO ENERGY, 2014, 9 : 364 - 372
  • [6] Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries
    Chen, Yuming
    Li, Xiaoyan
    Park, Kyusung
    Song, Jie
    Hong, Jianhe
    Zhou, Limin
    Mai, Yiu-Wing
    Huang, Haitao
    Goodenough, John B.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (44) : 16280 - 16283
  • [7] High-Performance Energy-Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks
    Chen, Zheng
    Zhang, Dieqing
    Wang, Xiaolei
    Jia, Xilai
    Wei, Fei
    Li, Hexing
    Lu, Yunfeng
    [J]. ADVANCED MATERIALS, 2012, 24 (15) : 2030 - 2036
  • [8] Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
  • [9] Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties
    Ding, Shujiang
    Zhang, Dongyang
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. NANOSCALE, 2012, 4 (01) : 95 - 98
  • [10] Glucose-Assisted Growth of MoS2 Nanosheets on CNT Backbone for Improved Lithium Storage Properties
    Ding, Shujiang
    Chen, Jun Song
    Lou, Xiong Wen
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (47) : 13142 - 13145