Fault diagnosis based on SPBO-SDAE and transformer neural network for rotating machinery

被引:37
|
作者
Du, Xianjun [1 ,2 ,3 ]
Jia, Liangliang [1 ]
Ul Haq, Izaz [1 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Key Lab Gansu Adv Control Ind Proc, Lanzhou 730050, Peoples R China
[3] Lanzhou Univ Technol, Natl Demonstrat Ctr Expt Elect & Control Engn Edu, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Rotating machinery; Hyper parameter optimization; Feature self-extraction; Transformer neural network; Self attention mechanism;
D O I
10.1016/j.measurement.2021.110545
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis for rotating machinery requires both high diagnosis accuracy and time efficiency. A rotating machinery fault diagnosis method based on intelligent feature self-extraction and transformer neural network is proposed. Firstly, the proposed method employs the student psychology based optimization (SPBO) algorithm to adaptively select hyper parameters, including the number of hidden layer nodes, sparsity coefficient and input data zeroing ratio, of the denoising auto encoder (DAE) network to determine the optimal structure of the stacked denoising auto encoders (SDAE) network. Secondly, the optimized SPBO-SDAE network is used to extract features from high-dimensional original data layer by layer. On this basis, the weight parameters of self-extracted features of SPBO-SDAE network are optimized through the self-attention mechanism of transformer deep neural network. The target features are retained, and the redundant features are filtered. Finally, in order to further validate the performance of the proposed model in the complex conditions, by adding Gaussian noise to the original data, the diagnosis performance of the proposed method is verified through four open data sets. The simulation results indicate that compared with the existing common shallow learning and deep learning methods, the proposed method has great advantages in generalization performance, fault diagnosis accuracy and time efficiency.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [2] A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
    Ma, Shangjun
    Cai, Wei
    Liu, Wenkai
    Shang, Zhaowei
    Liu, Geng
    SENSORS, 2019, 19 (10)
  • [3] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [4] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310
  • [5] FAULT DIAGNOSIS OF ROTATING MACHINERY USING KNOWLEDGE-BASED FUZZY NEURAL NETWORK
    李如强
    陈进
    伍星
    Applied Mathematics and Mechanics(English Edition), 2006, (01) : 99 - 108
  • [6] Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network
    Li, RQ
    Chen, J
    Wu, X
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (01) : 99 - 108
  • [7] Fault diagnosis of rotating machinery using knowledge-based fuzzy neural network
    Ru-qiang Li
    Jin Chen
    Xing Wu
    Applied Mathematics and Mechanics, 2006, 27 : 99 - 108
  • [8] Applications of Information Fusion Based on Fuzzy Neural Network to Rotating Machinery Fault Diagnosis
    Liu Jin
    Wang Shufen
    IITAW: 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATIONS WORKSHOPS, 2009, : 344 - +
  • [10] ART-KOHONEN neural network for fault diagnosis of rotating machinery
    Yang, BS
    Han, T
    An, JL
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2004, 18 (03) : 645 - 657