Reduced Order Bilinear Time Invariant Systems Using Singular Perturbation

被引:0
作者
Solikhatun [1 ,2 ]
Saragih, Roberd [1 ]
Joelianto, Endra [3 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Ind & Financial Math Res Grp, Bandung, Indonesia
[2] Gadjah Mada Univ, Fac Math & Nat Sci, Dept Math, Yogyakarta, Indonesia
[3] Inst Teknol Bandung, Fac Ind Technol, Instrumentat Dan Control Res Grp, Bandung, Indonesia
来源
2013 3RD INTERNATIONAL CONFERENCE ON INSTRUMENTATION CONTROL AND AUTOMATION (ICA 2013) | 2013年
关键词
bilinear time invariant system; reduced order bilinear system; singular perturbation; controllability and observability gramian; H(infinity)norm; MODEL-REDUCTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model order reduction of bilinear time invariant systems based on ff norm or least upper bound of difference equation is presented in this paper. The difference equation of the bilinear time invariant system is presentedas error transfer function between full order and reduced order of the bilinear time invariant system. The proposed method is graphically easier than using alteration of Hankel singular values. The least upper bound of the error transfer function and ff norm of difference bilinear system are a function of controllability gramian. In this paper, the reduced bilinear system is carried out by using singular perturbation method. The numerical simulation results are given to clarify the proposed method for selection of reduced order bilinear time invariant system.
引用
收藏
页码:92 / 97
页数:6
相关论文
共 22 条
[1]  
Aganovic Z., 1995, LINEAR OPTIMAL CONTR
[2]  
Al-Baiyat S. A., 1993, P 32 IEEE C DEC CONT
[3]   TRANSIENT APPROXIMATION OF A BILINEAR 2-AREA INTERCONNECTED POWER-SYSTEM [J].
ALBAIYAT, S ;
FARAG, AS ;
BETTAYEB, M .
ELECTRIC POWER SYSTEMS RESEARCH, 1993, 26 (01) :11-19
[4]   A projection method for model reduction of bilinear dynamical systems [J].
Bai, Zhaojun ;
Skoogh, Daniel .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 415 (2-3) :406-425
[5]   INTERPOLATION-BASED H2-MODEL REDUCTION OF BILINEAR CONTROL SYSTEMS [J].
Benner, Peter ;
Breiten, Tobias .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2012, 33 (03) :859-885
[6]   Krylov subspace methods for model order reduction of bilinear control systems [J].
Breiten, Tobias ;
Damm, Tobias .
SYSTEMS & CONTROL LETTERS, 2010, 59 (08) :443-450
[7]  
EKMAN M, 2005, MODELING CONTROL BIL
[8]  
Elliot D. L., 2009, Bilinear Control Systems: Applied Mathematical Science
[9]  
Enns D.F., 1984, P 23 C DEC CONTR
[10]  
Flagg G. M., 2012, THESIS FACULTY VIRIG