Generalized integral transforms and convolution products on function space

被引:21
作者
Chung, Hyun Soo [1 ,2 ]
Tuan, Vu Kim [2 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 330714, South Korea
[2] W Georgia Coll, Dept Math, Carrollton, GA 30117 USA
关键词
generalized integral transform; generalized convolution product; inverse integral transform; Gaussian process; FEYNMAN-INTEGRALS; WIENER SPACE;
D O I
10.1080/10652469.2010.535798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use a Gaussian process to define a generalized integral transform (GIT) and a generalized convolution product (GCP) of functionals defined on a function space. We establish the existence and some properties for the GIT, the GCP and the inverse integral transform. Finally, we prove a Fubini theorem for the GIT and the GCP.
引用
收藏
页码:573 / 586
页数:14
相关论文
共 14 条
[1]  
CAMERON RH, 1945, DUKE MATH J, V12, P489, DOI 10.1215/S0012-7094-45-01244-0
[2]   FOURIER-WIENER TRANSFORMS OF FUNCTIONALS BELONGING TO L-2 OVER THE SPACE-C [J].
CAMERON, RH ;
MARTIN, WT .
DUKE MATHEMATICAL JOURNAL, 1947, 14 (01) :99-107
[3]  
Cameron RobertH., 1980, PROCEEDINGS, V798, P18
[4]   Relationships involving generalized Fourier-Feynman transform, convolution and first variation [J].
Chang, KS ;
Cho, DH ;
Kim, BS ;
Song, TS ;
Yoo, I .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (5-6) :391-405
[5]  
Chang KS, 2000, NUMER FUNC ANAL OPT, V21, P97
[6]   Convolution products, integral transforms and inverse integral transforms of functionals in L2(C0[0, T]) [J].
Chang, Seung Jun ;
Chung, Hyun Soo ;
Skoug, David .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (02) :143-151
[7]   Integral Transforms of Functionals in L 2(C a,b [0,T]) [J].
Chang, Seung Jun ;
Chung, Hyun Soo ;
Skoug, David .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) :441-462
[8]  
CHUNG DM, 1993, MICH MATH J, V40, P377
[9]  
Huffman T., 1997, Int J Math Math Sci, V20, P19, DOI [10.1155/S0161171297000045, DOI 10.1155/S0161171297000045]
[10]   SCALE-INVARIANT MEASURABILITY IN WIENER SPACE [J].
JOHNSON, GW ;
SKOUG, DL .
PACIFIC JOURNAL OF MATHEMATICS, 1979, 83 (01) :157-176