The emergence of valency in colloidal crystals through electron equivalents

被引:63
作者
Wang, Shunzhi [1 ,2 ]
Lee, Sangmin [3 ]
Du, Jingshan S. [2 ,4 ]
Partridge, Benjamin E. [1 ,2 ]
Cheng, Ho Fung [1 ,2 ]
Zhou, Wenjie [1 ,2 ]
Dravid, Vinayak P. [2 ,4 ]
Lee, Byeongdu [5 ]
Glotzer, Sharon C. [3 ,6 ]
Mirkin, Chad A. [1 ,2 ,4 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[4] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[5] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Lemont, IL 60439 USA
[6] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
关键词
NANOPARTICLE SUPERLATTICES; MOLECULAR-DYNAMICS; PHASE; TRANSFORMATIONS; CRYSTALLIZATION; TRANSITIONS; LIQUIDS;
D O I
10.1038/s41563-021-01170-5
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Colloidal crystal engineering of complex, low-symmetry architectures is challenging when isotropic building blocks are assembled. Here we describe an approach to generating such structures based upon programmable atom equivalents (nanoparticles functionalized with many DNA strands) and mobile electron equivalents (small particles functionalized with a low number of DNA strands complementary to the programmable atom equivalents). Under appropriate conditions, the spatial distribution of the electron equivalents breaks the symmetry of isotropic programmable atom equivalents, akin to the anisotropic distribution of valence electrons or coordination sites around a metal atom, leading to a set of well-defined coordination geometries and access to three new low-symmetry crystalline phases. All three phases represent the first examples of colloidal crystals, with two of them having elemental analogues (body-centred tetragonal and high-pressure gallium), while the third (triple double-gyroid structure) has no known natural equivalent. This approach enables the creation of complex, low-symmetry colloidal crystals that might find use in various technologies. Symmetry breaking in colloidal crystals is achieved with DNA-grafted programmable atom equivalents and complementary electron equivalents, whose interactions are tuned to create anisotropic crystalline precursors with well-defined coordination geometries that assemble into distinct low-symmetry crystals.
引用
收藏
页码:580 / +
页数:13
相关论文
共 62 条
[1]  
Akcora P, 2009, NAT MATER, V8, P354, DOI [10.1038/nmat2404, 10.1038/NMAT2404]
[2]   HOOMD-blue: A Python']Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations [J].
Anderson, Joshua A. ;
Glaser, Jens ;
Glotzer, Sharon C. .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
[3]   Theory and simulation of DNA-coated colloids: a guide for rational design [J].
Angioletti-Uberti, Stefano ;
Mognetti, Bortolo M. ;
Frenkel, Daan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (09) :6373-6393
[4]  
[Anonymous], 1954, Mathematics and Plausible Reasoning: Analogy and Induction in Mathematics
[5]   DNA-mediated nanoparticle crystallization into Wulff polyhedra [J].
Auyeung, Evelyn ;
Li, Ting I. N. G. ;
Senesi, Andrew J. ;
Schmucker, Abrin L. ;
Pals, Bridget C. ;
de la Cruz, Monica Olvera ;
Mirkin, Chad A. .
NATURE, 2014, 505 (7481) :73-77
[6]   Transitioning DNA-Engineered Nanoparticle Superlattices from Solution to the Solid State [J].
Auyeung, Evelyn ;
Macfarlane, Robert J. ;
Choi, Chung Hang J. ;
Cutler, Joshua I. ;
Mirkin, Chad A. .
ADVANCED MATERIALS, 2012, 24 (38) :5181-5186
[7]   Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials [J].
Boles, Michael A. ;
Engel, Michael ;
Talapin, Dmitri V. .
CHEMICAL REVIEWS, 2016, 116 (18) :11220-11289
[8]   Driving diffusionless transformations in colloidal crystals using DNA handshaking [J].
Casey, Marie T. ;
Scarlett, Raynaldo T. ;
Rogers, W. Benjamin ;
Jenkins, Ian ;
Sinno, Talid ;
Crocker, John C. .
NATURE COMMUNICATIONS, 2012, 3
[9]   VANDERWAALS PICTURE OF LIQUIDS, SOLIDS, AND PHASE-TRANSFORMATIONS [J].
CHANDLER, D ;
WEEKS, JD ;
ANDERSEN, HC .
SCIENCE, 1983, 220 (4599) :787-794
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095