Clustered spots in the FitzHugh-Nagumo system

被引:29
作者
Wei, JC
Winter, M [1 ]
机构
[1] Univ Stuttgart, Fachbereich Math, D-70511 Stuttgart, Germany
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
pattern formation; FitzHugh-Nagumo system; optimal configuration;
D O I
10.1016/j.jde.2004.09.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct clustered spots for the following FitzHugh-Nagumo system: {epsilon(2) Delta n + f (u) - delta v = 0 in Omega {Delta n + u= 0 in Omega {u = v = 0 on partial derivative Omega, where Omega is a smooth and bounded domain in R-2. More precisely, we show that for any given integer K, there exists an epsilon(K) > 0 such that for 0 < epsilon < epsilon(K), epsilon(m') <=, delta <= epsilon(m) or some positive numbers m', m, there exists a solution (u(epsilon), v(epsilon)) to the FitzHugh-Nagumo system with the property that u(epsilon) has K spikes Q(I)(epsilon)...Q(K)(epsilon) and the following holds: (i) The center of the cluster I/K Sigma(K)(i=1) Q(i)(epsilon) approaches a hotspot point Q(0) epsilon Omega. (ii) Set I-epsilon = min(i=j) vertical bar Q(i)(epsilon) - Q(j)(epsilon)vertical bar = 1/root a log (1/delta epsilon(2)) epsilon(1 + o(1)). Then (1/l(epsilon)Q(i)(epsilon),..., 1/l(K)(epsilon)) approaches an optimal configuration of the following problem: (*) Given K points Q(1),...,Q(K) epsilon R-2 with minimum distance 1, find out the optimal configuration that minimizes the functional Sigma(i not equal j) log vertical bar Q(i) - Q(j)vertical bar. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 145
页数:25
相关论文
共 38 条
[1]   Harmonic radius and concentration of energy; Hyperbolic radius and Liouville's equations Delta U=e(U) and Delta U=Un-2/n+2 [J].
Bandle, C ;
Flucher, M .
SIAM REVIEW, 1996, 38 (02) :191-238
[2]  
Bates P., 1999, ADV DIFFERENTIAL EQU, V4, P1
[3]  
CLEMENT P, 1987, ANN SCUOLA NORM SUP, V14, P97
[4]  
Dancer EN, 2003, ANN SCUOLA NORM-SCI, V2, P679
[5]  
Dancer EN, 1999, INDIANA U MATH J, V48, P1177
[6]   Multipeak solutions for a singularly perturbed Neumann problem [J].
Dancer, EN ;
Yan, SS .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) :241-262
[7]   A note on asymptotic uniqueness for some nonlinearities which change sign [J].
Dancer, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (02) :305-312
[8]   A minimization problem associated with elliptic systems of FitzHugh-Nagumo type [J].
Dancer, EN ;
Yan, SS .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (02) :237-253
[9]  
DANCER EN, SOLUTIONS INTERIOR B
[10]  
DANCER EN, 2004, IN PRESS P LONDON MA