Computing densities for Markov chains via simulation

被引:13
作者
Henderson, SG [1 ]
Glynn, PW
机构
[1] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
[2] Stanford Univ, Terman Engn Ctr, Stanford, CA 94305 USA
关键词
Markov chain; density estimator; simulation;
D O I
10.1287/moor.26.2.375.10562
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a new class of density estimators, termed look-ahead density estimators, for performance measures associated with a Markov chain. Look-ahead density estimators are given for both transient and steady-state quantities. Look-ahead density estimators converge faster (especially in multidimensional problems) and empirically give visually superior results relative to more standard estimators, such as kernel density estimators. Several numerical examples that demonstrate the potential applicability of look-ahead density estimation are given.
引用
收藏
页码:375 / 400
页数:26
相关论文
共 29 条
[21]  
MUNOZ DF, 1998, IN PRESS OPER RES
[22]  
MUNOZ DF, 1998, BATCH MEANS METHODOL
[23]  
RAO BLS, 1983, NONPARAMETRIC FUNCTI
[24]  
Scott DW, 2015, WILEY SER PROBAB ST, P1
[25]  
Seber, 1977, LINEAR REGRESSION AN
[26]   A BATCHING APPROACH TO QUANTILE ESTIMATION IN REGENERATIVE SIMULATIONS [J].
SEILA, AF .
MANAGEMENT SCIENCE, 1982, 28 (05) :573-581
[27]  
Serfling R. J., 1980, Approximation Theorems of Mathematical Statistics