Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications

被引:19
作者
Humenik, Martin [1 ]
Pawar, Kiran [2 ]
Scheibel, Thomas [3 ,4 ,5 ,6 ,7 ]
机构
[1] Univ Bayreuth, Biomat, Fac Engn Sci, Bayreuth, Germany
[2] Univ British Columbia, Blusson Spinal Cord Ctr, Vancouver, BC, Canada
[3] Univ Bayreuth, Bayreuth Ctr Colloids & Interfaces BZKG, Bayreuth, Germany
[4] Univ Bayreuth, Res Ctr Biomacromol BIOmac, Bayreuth, Germany
[5] Univ Bayreuth, Bayreuth Ctr Mol Biosci BZMB, Bayreuth, Germany
[6] Univ Bayreuth, Bayreuth Ctr Mat Sci BayMAT, Bayreuth, Germany
[7] Univ Bayreuth, Bavarian Polymer Inst BPI, Bayreuth, Germany
来源
BIOLOGICAL AND BIO-INSPIRED NANOMATERIALS: PROPERTIES AND ASSEMBLY MECHANISMS | 2019年 / 1174卷
关键词
Biofabrication; Drug delivery; Fibers; Genetic engineering; Recombinant production; Self-assembly; Spider silk; Tissue engineering; N-TERMINAL DOMAIN; ATOMIC-FORCE MICROSCOPY; MAJOR AMPULLATE GLAND; SOLID-STATE NMR; DRAGLINE SILK; MECHANICAL-PROPERTIES; BLACK-WIDOW; RHEOLOGICAL CHARACTERIZATION; RECOMBINANT PRODUCTION; PROTEIN-COMPONENTS;
D O I
10.1007/978-981-13-9791-2_6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.
引用
收藏
页码:187 / 221
页数:35
相关论文
共 218 条
[1]  
Adamcik J, 2010, NAT NANOTECHNOL, V5, P423, DOI [10.1038/NNANO.2010.59, 10.1038/nnano.2010.59]
[2]   Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers [J].
Aggeli, A ;
Nyrkova, IA ;
Bell, M ;
Harding, R ;
Carrick, L ;
McLeish, TCB ;
Semenov, AN ;
Boden, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (21) :11857-11862
[3]   Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders [J].
Agnarsson, I. ;
Blackledge, T. A. .
JOURNAL OF ZOOLOGY, 2009, 278 (02) :134-140
[4]   Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider [J].
Agnarsson, Ingi ;
Kuntner, Matjaz ;
Blackledge, Todd A. .
PLOS ONE, 2010, 5 (09) :1-8
[5]   Biomedical Applications of Recombinant Silk-Based Materials [J].
Aigner, Tamara Bernadette ;
DeSimone, Elise ;
Scheibel, Thomas .
ADVANCED MATERIALS, 2018, 30 (19)
[6]   Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration [J].
Allmeling, C. ;
Jokuszies, A. ;
Reimers, K. ;
Kall, S. ;
Choi, C. Y. ;
Brandes, G. ;
Kasper, C. ;
Scheper, T. ;
Guggenheim, M. ;
Vogt, P. M. .
CELL PROLIFERATION, 2008, 41 (03) :408-420
[7]   Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit [J].
Allmeling, Christina ;
Jokuszies, Andreas ;
Reimers, Kerstin ;
Kall, Susanne ;
Vogt, Peter M. .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2006, 10 (03) :770-777
[8]   Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks [J].
An, Bo ;
Tang-Schomer, Min D. ;
Huang, Wenwen ;
He, Jiuyang ;
Jones, Justin A. ;
Lewis, Randolph V. ;
Kaplan, David L. .
BIOMATERIALS, 2015, 48 :137-146
[9]   AMINO ACID COMPOSITION OF SPIDER SILDS [J].
ANDERSEN, SO .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY, 1970, 35 (03) :705-&
[10]   Morphology and Composition of the Spider Major Ampullate Gland and Dragline Silk [J].
Andersson, Marlene ;
Holm, Lena ;
Ridderstrale, Yvonne ;
Johansson, Jan ;
Rising, Anna .
BIOMACROMOLECULES, 2013, 14 (08) :2945-2952