Digital pathology and artificial intelligence in translational medicine and clinical practice

被引:298
作者
Baxi, Vipul [1 ]
Edwards, Robin [1 ]
Montalto, Michael [2 ]
Saha, Saurabh [1 ]
机构
[1] Bristol Myers Squibb, Princeton, NJ 08540 USA
[2] PathAI, Boston, MA USA
关键词
CELL LUNG-CANCER; OPEN-LABEL; IMAGE-ANALYSIS; IMMUNOHISTOCHEMISTRY; PEMBROLIZUMAB; DOCETAXEL; MULTICENTER; NIVOLUMAB; HETEROGENEITY; ATEZOLIZUMAB;
D O I
10.1038/s41379-021-00919-2
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Traditional pathology approaches have played an integral role in the delivery of diagnosis, semi-quantitative or qualitative assessment of protein expression, and classification of disease. Technological advances and the increased focus on precision medicine have recently paved the way for the development of digital pathology-based approaches for quantitative pathologic assessments, namely whole slide imaging and artificial intelligence (AI)-based solutions, allowing us to explore and extract information beyond human visual perception. Within the field of immuno-oncology, the application of such methodologies in drug development and translational research have created invaluable opportunities for deciphering complex pathophysiology and the discovery of novel biomarkers and drug targets. With an increasing number of treatment options available for any given disease, practitioners face the growing challenge of selecting the most appropriate treatment for each patient. The ever-increasing utilization of AI-based approaches substantially expands our understanding of the tumor microenvironment, with digital approaches to patient stratification and selection for diagnostic assays supporting the identification of the optimal treatment regimen based on patient profiles. This review provides an overview of the opportunities and limitations around implementing AI-based methods in biomarker discovery and patient selection and discusses how advances in digital pathology and AI should be considered in the current landscape of translational medicine, touching on challenges this technology may face if adopted in clinical settings. The traditional role of pathologists in delivering accurate diagnoses or assessing biomarkers for companion diagnostics may be enhanced in precision, reproducibility, and scale by AI-powered analysis tools.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 145 条
[1]   Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association [J].
Abels, Esther ;
Pantanowitz, Liron ;
Aeffner, Famke ;
Zarella, Mark D. ;
van der Laak, Jeroen ;
Bui, Marilyn M. ;
Vemuri, Venkata N. P. ;
Parwani, Anil V. ;
Gibbs, Jeff ;
Agosto-Arroyo, Emmanuel ;
Beck, Andrew H. ;
Kozlowski, Cleopatra .
JOURNAL OF PATHOLOGY, 2019, 249 (03) :286-294
[2]   Not Just Digital Pathology, Intelligent Digital Pathology [J].
Acs, Balazs ;
Rimm, David L. .
JAMA ONCOLOGY, 2018, 4 (03) :403-404
[3]  
Adnan M., 2020, REPRESENTATION LEARN
[4]  
Aeffner Famke, 2019, J Pathol Inform, V10, P9, DOI [10.4103/jpi.jpi_82_18, 10.4103/jpi.jpi_82_18]
[5]   Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms [J].
Ahern, Thomas P. ;
Beck, Andrew H. ;
Rosner, Bernard A. ;
Glass, Ben ;
Frieling, Gretchen ;
Collins, Laura C. ;
Tamimi, Rulla M. .
JOURNAL OF CLINICAL PATHOLOGY, 2017, 70 (05) :428-434
[6]   Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy [J].
Althammer, Sonja ;
Tan, Tze Heng ;
Spitzmuller, Andreas ;
Rognoni, Lorenz ;
Wiestler, Tobias ;
Herz, Thomas ;
Widmaier, Moritz ;
Rebelatto, Marlon C. ;
Kaplon, Helene ;
Damotte, Diane ;
Alifano, Marco ;
Hammond, Scott A. ;
Dieu-Nosjean, Marie-Caroline ;
Ranade, Koustubh ;
Schmidt, Guenter ;
Higgs, Brandon W. ;
Steele, Keith E. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
[7]   Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer [J].
Antonia, S. J. ;
Villegas, A. ;
Daniel, D. ;
Vicente, D. ;
Murakami, S. ;
Hui, R. ;
Yokoi, T. ;
Chiappori, A. ;
Lee, K. H. ;
de Wit, M. ;
Cho, B. C. ;
Bourhaba, M. ;
Quantin, X. ;
Tokito, T. ;
Mekhail, T. ;
Planchard, D. ;
Kim, Y. -C. ;
Karapetis, C. S. ;
Hiret, S. ;
Ostoros, G. ;
Kubota, K. ;
Gray, J. E. ;
Paz-Ares, L. ;
de Castro Carpeno, J. ;
Wadsworth, C. ;
Melillo, G. ;
Jiang, H. ;
Huang, Y. ;
Dennis, P. A. ;
Ozguroglu, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (20) :1919-1929
[8]   Complete Digital Pathology for Routine Histopathology Diagnosis in a Multicenter Hospital Network [J].
Antonio Retamero, Juan ;
Aneiros-Fernandez, Jose ;
del Moral, Raimundo G. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (02) :221-228
[9]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[10]   Preanalytic Variables and Tissue Stewardship for Reliable Next-Generation Sequencing (NGS) Clinical Analysis [J].
Ascierto, Paolo A. ;
Bifulco, Carlo ;
Palmieri, Giuseppe ;
Peters, Solange ;
Sidiropoulos, Nikoletta .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2019, 21 (05) :756-767