Nonignorable Influence of Oxygen in Hard Carbon for Sodium Ion Storage

被引:200
作者
Chen, Chen [1 ]
Huang, Ying [1 ]
Zhu, Yade [1 ]
Zhang, Zheng [1 ]
Guang, Zhaoxu [1 ]
Meng, Zhuoyue [2 ]
Liu, Panbo [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Xian 710072, Peoples R China
[2] Xian Univ Sci & Technol, Coll Chem & Chem Engn, Xian 710054, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen-doped; anode; sodium storage; biomass-derived; hard carbon; HIGH-PERFORMANCE SODIUM; DOPED CARBON; ANODE MATERIALS; PROMISING ANODE; ENERGY-STORAGE; HIGH-CAPACITY; BATTERY; LITHIUM; NITROGEN; NANOSTRUCTURES;
D O I
10.1021/acssuschemeng.9b05948
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As an effective method, heteroatom doping is widely used to improve the electrochemical performance of carbon materials. However, the influence of oxygen-containing functional groups in carbon materials is often neglected. Therefore, we use buckwheat hulls as the precursor to prepare oxygen-doped hard carbon by simple carbonization. The buckwheat hull at a pyrolysis temperature of 1100 degrees C has the highest reversible capacity of 400 mA h g(-1) at 50 mA g(-1), and the capacity can maintain 96% of the initial capacity after 3000 cycles at 2A g(-1). These results confirm that the natural pore structure and proper interlayer spacing of the BPC-1100 contribute to the transport and insertion of sodium ions. In addition, the first principle proves that the role of oxygen atoms cannot be ignored in the storage of sodium ions. In particular, the improvement of the C=O bond is helpful to improve the adsorption capacity of hard carbon to sodium ions and enhance the reversible capacitance.
引用
收藏
页码:1497 / 1506
页数:19
相关论文
共 75 条
[1]  
[Anonymous], ADV ENERGY MAT
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Polyanionic Insertion Materials for Sodium-Ion Batteries [J].
Barpanda, Prabeer ;
Lander, Laura ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[4]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[5]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[6]   Nanospace confined N,P co-doped carbon foams as anode for highly reversible and high capacity sodium ions batteries [J].
Chen, Yuxiang ;
Li, Jie ;
Lai, Yanqing ;
Yin, Meng ;
Zhang, Zhian .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 810 :207-215
[7]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[8]   Hierarchical, nanoporous graphenic carbon materials through an instant, self-sustaining magnesiothermic reduction [J].
Dyjak, Siawomir ;
Kicinski, Wojciech ;
Norek, Maigorzata ;
Huczko, Andrzej ;
Labedz, Olga ;
Budner, Soguslaw ;
Polanski, Marek .
CARBON, 2016, 96 :937-946
[9]   Raspberry-like Ni/NiO/CoO/Mn3O4 hierarchical structures as novel electrode material for high-performance all-solid-state asymmetric supercapacitors [J].
Feng, Xuansheng ;
Huang, Ying ;
Li, Chao ;
Li, Yan ;
Chen, Chen ;
Liu, Panbo .
CERAMICS INTERNATIONAL, 2019, 45 (15) :18273-18280
[10]   Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors [J].
Feng, Xuansheng ;
Huang, Ying ;
Li, Chao ;
Xiao, Yuyang ;
Chen, Xuefang ;
Gao, Xiaogang ;
Chen, Chen .
ELECTROCHIMICA ACTA, 2019, 308 :142-149