Bioprinting for bone tissue engineering

被引:11
作者
Bonatti, Amedeo F. [1 ]
Chiesa, Irene [1 ]
Micalizzi, Simone [1 ]
Vozzi, Giovanni [1 ]
De Maria, Carmelo [1 ]
机构
[1] Univ Pisa, Enrico Piaggio Res Ctr, Dept Comp Engn, Pisa, Italy
来源
MINERVA ORTHOPEDICS | 2021年 / 72卷 / 04期
关键词
Bone and bones; Tissue engineering; Bioprinting; Tissue scaffolds; Anatomic model; SOLID FREEFORM FABRICATION; MESENCHYMAL STEM-CELLS; IN-VITRO; 3-DIMENSIONAL SCAFFOLDS; EXTRACELLULAR-MATRIX; PLA SCAFFOLDS; REGENERATION; MULTIMATERIAL; TECHNOLOGY; COMPOSITES;
D O I
10.23736/S2784-8469.20.04032-1
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Bone tissue engineering (BTE) is an interdisciplinary field that aims to create three-dimensional living scaffolds to substitute or study bone tissue. In the last decades, bioprinting techniques have almost replaced conventional techniques (e.g. freeze drying and gas foaming) in the fabrication of BTE scaffolds, due to their intrinsic capability to finely control architecture, and embed cells and bioactive molecules. In this work, we analyzed bioprinting technologies used in BTE, reporting the most significant literature case studies, and focusing also on in-vitro bone models. Finally, we introduced new and innovative trends, including in-situ bioprinting and four-dimensional printing, towards which bioprinting research is moving.
引用
收藏
页码:376 / 394
页数:19
相关论文
共 99 条
[1]   Multilayer scaffolds in orthopaedic tissue engineering [J].
Atesok, Kivanc ;
Doral, M. Nedim ;
Karlsson, Jon ;
Egol, Kenneth A. ;
Jazrawi, Laith M. ;
Coelho, Paulo G. ;
Martinez, Amaury ;
Matsumoto, Tomoyuki ;
Owens, Brett D. ;
Ochi, Mitsuo ;
Hurwitz, Shepard R. ;
Atala, Anthony ;
Fu, Freddie H. ;
Lu, Helen H. ;
Rodeo, Scott A. .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2016, 24 (07) :2365-2373
[2]  
Basit A.W., 2018, 3D printing of pharmaceuticals
[3]   Engineered In Vitro Disease Models [J].
Benam, Kambez H. ;
Dauth, Stephanie ;
Hassell, Bryan ;
Herland, Anna ;
Jain, Abhishek ;
Jang, Kyung-Jin ;
Karalis, Katia ;
Kim, Hyun Jung ;
MacQueen, Luke ;
Mahmoodian, Roza ;
Musah, Samira ;
Torisawa, Yu-suke ;
van der Meer, Andries D. ;
Villenave, Remi ;
Yadid, Moran ;
Parker, Kevin K. ;
Ingber, Donald E. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 10, 2015, 10 :195-262
[4]   Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds [J].
Bose, Susmita ;
Banerjee, Dishary ;
Robertson, Samuel ;
Vahabzadeh, Sahar .
ANNALS OF BIOMEDICAL ENGINEERING, 2018, 46 (09) :1241-1253
[5]   Bone tissue engineering using 3D printing [J].
Bose, Susmita ;
Vahabzadeh, Sahar ;
Bandyopadhyay, Amit .
MATERIALS TODAY, 2013, 16 (12) :496-504
[6]  
Bouet G, 2015, TISSUE ENG PART B-RE, V21, P133, DOI [10.1089/ten.TEB.2013.0682, 10.1089/ten.teb.2013.0682]
[7]   MESENCHYMAL STEM-CELLS IN IN BONE-DEVELOPMENT, BONE REPAIR, AND SKELETAL REGENERATION THERAPY [J].
BRUDER, SP ;
FINK, DJ ;
CAPLAN, AI .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 56 (03) :283-294
[8]   Powder-based 3D printing for bone tissue engineering [J].
Brunello, G. ;
Sivolella, S. ;
Meneghello, R. ;
Ferroni, L. ;
Gardin, C. ;
Piattelli, A. ;
Zavan, B. ;
Bressan, E. .
BIOTECHNOLOGY ADVANCES, 2016, 34 (05) :740-753
[9]   Biomaterial developments for bone tissue engineering [J].
Burg, KJL ;
Porter, S ;
Kellam, JF .
BIOMATERIALS, 2000, 21 (23) :2347-2359
[10]   Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects [J].
Castilho, Miguel ;
Moseke, Claus ;
Ewald, Andrea ;
Gbureck, Uwe ;
Groll, Juergen ;
Pires, Ines ;
Tessmar, Joerg ;
Vorndran, Elke .
BIOFABRICATION, 2014, 6 (01)