A note on list improper coloring planar graphs

被引:54
作者
Lih, KW [1 ]
Song, ZM
Wang, WF
Zhang, KM
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
[3] Liaoning Univ, Dept Math, Shenyang 110036, Peoples R China
[4] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
list improper coloring; list chromatic number; cycles;
D O I
10.1016/S0893-9659(00)00147-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is called (k, d)*-choosable if, for every list assignment L satisfying \L(v)\ = k for all v is an element of V(G), there is an L-coloring of G such that each vertex of G has at most d neighbors colored with the same color as itself. In this note, we prove that every planar graph without 4-cycles and l-cycles for some l is an element of {5, 6, 7} is (3, 1)*-choosable. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:269 / 273
页数:5
相关论文
共 11 条
[1]  
Borodin OV, 1996, J GRAPH THEOR, V21, P183
[2]  
Eaton N., 1999, Bull. Inst. Combin. Appl, V25, P79
[3]  
Erd o P., 1979, Congr. Numer., V26, P125
[4]  
Jensen T. R., 1995, Graph Coloring Problems
[5]   A NOTE ON THE 3-COLOR PROBLEM [J].
SANDERS, DP ;
ZHAO, Y .
GRAPHS AND COMBINATORICS, 1995, 11 (01) :91-94
[6]   List improper colorings of planar graphs with prescribed girth [J].
Skrekovski, R .
DISCRETE MATHEMATICS, 2000, 214 (1-3) :221-233
[7]   List improper colourings of planar graphs [J].
Skrekovski, R .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (03) :293-299
[8]   A Grotzsch-type theorem for list colourings with impropriety one [J].
Skrekovski, R .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (05) :493-507
[9]   3-LIST-COLORING PLANAR GRAPHS OF GIRTH-5 [J].
THOMASSEN, C .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :101-107
[10]  
Vizing V.G., 1976, Diskret. Analiz. no. 29, Metody Diskret. Anal. v Teorii Kodovi Skhem, V29, P3