Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram

被引:404
作者
Nhan Duy Truong [1 ,2 ,3 ]
Anh Duy Nguyen [2 ]
Kuhlmann, Levin [4 ,5 ,6 ]
Bonyadi, Mohammad Reza [7 ,8 ]
Yang, Jiawei [9 ]
Ippolito, Samuel [3 ]
Kavehei, Omid [1 ,2 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sch Elect & Informat Engn, Nanoneuroinspired Res Lab, Sydney, NSW 2006, Australia
[3] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[4] Swinburne Univ, Ctr Human Psychopharmacol, Hawthorn, Vic 3122, Australia
[5] Univ Melbourne, Dept Elect & Elect Engn, Neuroengn Lab, Parkville, Vic 3010, Australia
[6] Univ Melbourne, St Vincents Hosp Melbourne, Dept Med, Parkville, Vic 3010, Australia
[7] Univ Queensland, Ctr Adv Imaging, St Lucia, Qld 4072, Australia
[8] Univ Adelaide, Optimizat & Logist Grp, Adelaide, SA 5005, Australia
[9] Nanochap Elect & Wenzhou Med Univ, 268 Xueyuan West Rd, Wenzhou, Peoples R China
基金
英国医学研究理事会; 中国国家自然科学基金;
关键词
Seizure prediction; Convolutional neural network; Machine learning; Intracranial EEG; Scalp EEG; EPILEPTIC SEIZURES; HIPPOCAMPAL;
D O I
10.1016/j.neunet.2018.04.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Seizure prediction has attracted growing attention as one of the most challenging predictive data analysis efforts to improve the life of patients with drug-resistant epilepsy and tonic seizures. Many outstanding studies have reported great results in providing sensible indirect (warning systems) or direct (interactive neural stimulation) control over refractory seizures, some of which achieved high performance. However, to achieve high sensitivity and a low false prediction rate, many of these studies relied on handcraft feature extraction and/or tailored feature extraction, which is performed for each patient independently. This approach, however, is not generalizable, and requires significant modifications for each new patient within a new dataset. In this article, we apply convolutional neural networks to different intracranial and scalp electroencephalogram (EEG) datasets and propose a generalized retrospective and patient-specific seizure prediction method. We use the short-time Fourier transform on 30-s EEG windows to extract information in both the frequency domain and the time domain. The algorithm automatically generates optimized features for each patient to best classify preictal and interictal segments. The method can be applied to any other patient from any dataset without the need for manual feature extraction. The proposed approach achieves sensitivity of 81.4%, 81.2%, and 75% and a false prediction rate of 0.06/h, 0.16/h, and 0.21/h on the Freiburg Hospital intracranial EEG dataset, the Boston Children's Hospital-MIT scalp EEG dataset, and the American Epilepsy Society Seizure Prediction Challenge dataset, respectively. Our prediction method is also statistically better than an unspecific random predictor for most of the patients in all three datasets. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 35 条
[1]   Seizure prediction in patients with focal hippocampal epilepsy [J].
Aarabi, Ardalan ;
He, Bin .
CLINICAL NEUROPHYSIOLOGY, 2017, 128 (07) :1299-1307
[2]   Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach [J].
Aarabi, Ardalan ;
He, Bin .
CLINICAL NEUROPHYSIOLOGY, 2014, 125 (05) :930-940
[3]  
[Anonymous], 2014, AM EP SOC SEIZ PRED
[4]  
[Anonymous], 2003, EEG DAT
[5]  
[Anonymous], ADV NEURAL PROCESSIN
[6]  
[Anonymous], IEEE T BIOMEDICAL EN
[7]   Towards accurate prediction of epileptic seizures: A review [J].
Assi, Elie Bou ;
Nguyen, Dang K. ;
Rihana, Sandy ;
Sawan, Mohamad .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 :144-157
[8]   A Survey of Predictive Modeling on Im balanced Domains [J].
Branco, Paula ;
Torgo, Luis ;
Ribeiro, Rita P. .
ACM COMPUTING SURVEYS, 2016, 49 (02)
[9]   Crowdsourcing reproducible seizure forecasting in human and canine epilepsy [J].
Brinkmann, Benjamin H. ;
Wagenaar, Joost ;
Abbot, Drew ;
Adkins, Phillip ;
Bosshard, Simone C. ;
Chen, Min ;
Tieng, Quang M. ;
He, Jialune ;
Munoz-Almaraz, F. J. ;
Botella-Rocamora, Paloma ;
Pardo, Juan ;
Zamora-Martinez, Francisco ;
Hills, Michael ;
Wu, Wei ;
Korshunova, Iryna ;
Cukierski, Will ;
Vite, Charles ;
Patterson, Edward E. ;
Litt, Brian ;
Worrell, Gregory A. .
BRAIN, 2016, 139 :1713-1722
[10]   Ngram-Derived Pattern Recognition for the Detection and Prediction of Epileptic Seizures [J].
Eftekhar, Amir ;
Juffali, Walid ;
El-Imad, Jamil ;
Constandinou, Timothy G. ;
Toumazou, Christofer .
PLOS ONE, 2014, 9 (06)