AN EFFECTIVE METHOD FOR DETECTING CHAOS IN FRACTIONAL-ORDER SYSTEMS

被引:25
作者
Cafagna, Donato [1 ]
Grassi, Giuseppe [1 ]
机构
[1] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 03期
关键词
Fractional-order systems; binary test for detecting fractional chaos; Adomian decomposition method; fractional-order Chua's circuit; fractional-order Chen system; fractional-order Lorenz system; ADOMIAN DECOMPOSITION; CHUAS EQUATION; CHEN SYSTEM; DYNAMICS; SYNCHRONIZATION; APPROXIMATION; BIFURCATION; EXTENSIONS; DECAY; TOOL;
D O I
10.1142/S0218127410025958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper illustrates a reliable binary test for detecting the presence of chaos in nonlinear systems described by fractional-order differential equations. The method, which is inspired by the technique proposed in [Gottwald & Melbourne, 2004] for integer-order differential equations, does not require phase space reconstruction of the fractional system. It consists of obtaining the data series, constructing a random walk-type process and studying how the variance of the random walk scales with time. In order to show the capabilities of the approach, the test is successfully applied to three well-known dynamical systems, i.e. fractional Chua, Chen and Lorenz systems.
引用
收藏
页码:669 / 678
页数:10
相关论文
共 46 条
[1]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[2]  
Adomian G., 1994, Fundamental Theories of Physics
[3]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[4]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[5]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[6]  
ARENA P, 2003, NONLINEAR NONINTEGER
[7]   Subexponential decay of correlations for compact group extensions of non-uniformly expanding systems [J].
Bruin, H ;
Holland, M ;
Melbourne, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1719-1738
[8]  
Cafagna D, 2007, IEE IND ELECTRON M, V1, P35, DOI 10.1109/MIE.2007.901479
[9]   BIFURCATION AND CHAOS IN THE FRACTIONAL-ORDER CHEN SYSTEM VIA A TIME-DOMAIN APPROACH [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (07) :1845-1863
[10]   Fractional-order Chua's circuit: Time-domain analysis, bifurcation, chaotic behavior and test for chaos [J].
Cafagna, Donato ;
Grassi, Giuseppe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (03) :615-639