A Short-Term and High-Resolution Distribution System Load Forecasting Approach Using Support Vector Regression With Hybrid Parameters Optimization

被引:172
作者
Jiang, Huaiguang [1 ]
Zhang, Yingchen [1 ]
Muljadi, Eduard [1 ]
Zhang, Jun Jason [2 ]
Gao, David Wenzhong [3 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Denver, Elect & Comp Engn, Denver, CO 80210 USA
[3] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80210 USA
关键词
Short-term load forecast; support vector regression; grid traverse algorithm; particle swarm optimization; distribution system; PEAK LOAD; MULTIVARIATE SKEWNESS; MACHINES; KURTOSIS; IDENTIFICATION; TUTORIAL;
D O I
10.1109/TSG.2016.2628061
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system. The performance of the proposed approach is compared to some classic methods in later sections of this paper.
引用
收藏
页码:3341 / 3350
页数:10
相关论文
共 42 条
[1]   Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model [J].
Al-Hamadi, HM ;
Soliman, SA .
ELECTRIC POWER SYSTEMS RESEARCH, 2004, 68 (01) :47-59
[2]   Short-term hourly load forecasting using time-series modeling with peak load estimation capability [J].
Amjady, N .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2001, 16 (03) :498-505
[3]  
[Anonymous], 2003, STAT PATTERN RECOGNI
[4]  
[Anonymous], 2006, THESIS U PRETORIA S
[5]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]   The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid [J].
Clement-Nyns, Kristien ;
Haesen, Edwin ;
Driesen, Johan .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) :371-380
[8]   Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method [J].
Cui, Mingjian ;
Ke, Deping ;
Sun, Yuanzhang ;
Gan, Di ;
Zhang, Jie ;
Hodge, Bri-Mathias .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (02) :422-433
[9]   Distributed Optimal Power Flow for Smart Microgrids [J].
Dall'Anese, Emiliano ;
Zhu, Hao ;
Giannakis, Georgios B. .
IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (03) :1464-1475
[10]   Particle swarm optimization: Basic concepts, variants and applications in power systems [J].
del Valle, Yamille ;
Venayagamoorthy, Ganesh Kumar ;
Mohagheghi, Salman ;
Hernandez, Jean-Carlos ;
Harley, Ronald G. .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (02) :171-195