Learning for Unconstrained Space-Time Video Super-Resolution

被引:27
作者
Shi, Zhihao [1 ]
Liu, Xiaohong [2 ]
Li, Chengqi [3 ]
Dai, Linhui [1 ]
Chen, Jun [1 ]
Davidson, Timothy N. [1 ]
Zhao, Jiying [4 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
[2] Shanghai Jiao Tong Univ, John Hoperoft Ctr, Shanghai 200240, Peoples R China
[3] McMaster Univ, Dept Comp & Software, Hamilton, ON L8S 4K1, Canada
[4] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Superresolution; Optical imaging; Spatial resolution; Kernel; Convolution; Interpolation; Deconvolution; Space-time video super-resolution; arbitrary temporal; spatial factors; optical flow; generalized pixelshuffle layer; IMAGE SUPERRESOLUTION; NETWORK; RESOLUTION;
D O I
10.1109/TBC.2021.3131875
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent years have seen considerable research activities devoted to video enhancement that simultaneously increases temporal frame rate and spatial resolution. However, the existing methods either fail to explore the intrinsic relationship between temporal and spatial information or lack flexibility in the choice of final temporal/spatial resolution. In this work, we propose an unconstrained space-time video super-resolution network, which can effectively exploit space-time correlation to boost performance. Moreover, it has complete freedom in adjusting the temporal frame rate and spatial resolution through the use of the optical flow technique and a generalized pixelshuffle operation. Our extensive experiments demonstrate that the proposed method not only outperforms the state-of-the-art, but also requires far fewer parameters and less running time.
引用
收藏
页码:345 / 358
页数:14
相关论文
共 70 条
[1]   Depth-Aware Video Frame Interpolation [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Ma, Chao ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3698-3707
[2]   MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) :933-948
[3]   GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution [J].
Chan, Kelvin C. K. ;
Wang, Xintao ;
Xu, Xiangyu ;
Gu, Jinwei ;
Loy, Chen Change .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :14240-14249
[4]  
CHARBONNIER P, 1994, IEEE IMAGE PROC, P168
[5]  
Chen J., 2020, ARXIV200302115
[6]   All at Once: Temporally Adaptive Multi-frame Interpolation with Advanced Motion Modeling [J].
Chi, Zhixiang ;
Nasiri, Rasoul Mohammadi ;
Liu, Zheng ;
Lu, Juwei ;
Tang, Jin ;
Plataniotis, Konstantinos N. .
COMPUTER VISION - ECCV 2020, PT XXVII, 2020, 12372 :107-123
[7]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[8]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   UPDResNN: A Deep Light-Weight Image Upsampling and Deblurring Residual Neural Network [J].
Esmaeilzehi, Alireza ;
Ahmad, M. Omair ;
Swamy, M. N. S. .
IEEE TRANSACTIONS ON BROADCASTING, 2021, 67 (02) :538-548