MoNbTaV Medium-Entropy Alloy

被引:131
作者
Yao, Hongwei [1 ]
Qiao, Jun-Wei [1 ]
Gao, Michael C. [2 ,3 ]
Hawk, Jeffrey A. [2 ]
Ma, Sheng-Guo [4 ]
Zhou, Hefeng [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Lab Appl Phys & Mech Adv Mat, Taiyuan 030024, Peoples R China
[2] Natl Energy Technol Lab, Albany, OR 97321 USA
[3] AECOM, POB 1959, Albany, OR 97321 USA
[4] Taiyuan Univ Technol, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
medium-entropy alloy; high-entropy alloy; enthalpy; entropy; lattice parameter; rule of mixture; mechanical properties; hardness; yield strength; solid solution strengthening; SOLID-SOLUTION PHASE; DESIGN; MICROSTRUCTURE; CONSTITUTION; STABILITY; ELEMENTS;
D O I
10.3390/e18050189
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Guided by CALPHAD (Calculation of Phase Diagrams) modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 angstrom) obeys the rule of mixtures (ROM), but the Vickers microhardness (4.95 GPa) and the yield strength (1.5 GPa) are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.
引用
收藏
页数:15
相关论文
共 45 条
[1]  
[Anonymous], 2016, HIGH ENTROPY ALLOYS, DOI [DOI 10.1007/978-3-319-27013-5, DOI 10.1007/978-3-319-27013-5_6]
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]  
Donachie M J., 2002, Superalloys: a Technical Guide
[4]   Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys [J].
Dong, Yong ;
Lu, Yiping ;
Jiang, Li ;
Wang, Tongmin ;
Li, Tingju .
INTERMETALLICS, 2014, 52 :105-109
[5]   High-Entropy Alloys in Hexagonal Close-Packed Structure [J].
Gao, M. C. ;
Zhang, B. ;
Guo, S. M. ;
Qiao, J. W. ;
Hawk, J. A. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (07) :3322-3332
[6]   Design of Refractory High-Entropy Alloys [J].
Gao, M. C. ;
Carney, C. S. ;
Dogan, A-N. ;
Jablonksi, P. D. ;
Hawk, J. A. ;
Alman, D. E. .
JOM, 2015, 67 (11) :2653-2669
[7]   Phase stability and elastic properties of Cr-V alloys [J].
Gao, M. C. ;
Suzuki, Y. ;
Schweiger, H. ;
Dogan, O. N. ;
Hawk, J. ;
Widom, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (07)
[8]   The first-principles design of ductile refractory alloys [J].
Gao, Michael C. ;
Dogan, Oemer N. ;
King, Paul ;
Rollett, Anthony D. ;
Widom, Michael .
JOM, 2008, 60 (07) :61-65
[9]   Searching for Next Single-Phase High-Entropy Alloy Compositions [J].
Gao, Michael C. ;
Alman, David E. .
ENTROPY, 2013, 15 (10) :4504-4519
[10]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158