This study was designed to examine the effects of several classic convulsants on the extracellular concentration of the anticonvulsant and neuroprotective brain metabolite kyn-urenic acid (KYNA) in the rat brain. Drug effects were investigated in vivo, mostly by unilateral microdialysis in the dorsal hippocampus. Systemic administration of pentylenetetrazole (60 mg/kg, SC), pilocarpine (325 mg/kg, SC), bicuculline (6 mg/kg, SC), or kainic acid (10 mg/kg, SC) caused characteristic clonic and/or tonic convulsions. In all seizure paradigms, KYNA levels in the dialysate began to rise within 1 h and gradually reached a plateau approximately 4 h after administration of the convulsants. Peak increases were 1.5-3-fold over basal levels. The duration of the elevation in KYNA levels was significantly prolonged following kainic acid application. In the kainic acid model, extracellular KYNA was also measured and found to be increased in the ventral hippocampus, piriform cortex, and striatum. Moreover, temporary intrahippocampal infusion of the KYN synthesis inhibitor aminooxyacetic acid (1 mM) in the kainic acid- and pentylenetetrazole models attenuated the increase in extracellular KYNA levels, demonstrating that de novo production of KYNA in the brain accounts for the seizure-induced KYNA overflow. A separate group of animals received a unilateral intrahippocampal injection of the endogenous convulsant excitotoxin quinolinic acid (120 nmol) and showed long-lasting (> 24 h) bilateral increases in extracellular KYNA levels. Taken together, these data indicate that an increase in extracellular KYNA may constitute a common occurrence in response to seizures and that KYNA elevations may signify the brain's attempt to counteract seizure activity.