Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation

被引:54
作者
Nakaguchi, E. [1 ]
Osaki, K. [2 ]
机构
[1] Tokyo Med & Dent Univ, Coll Liberal Arts & Sci, Chiba 2720827, Japan
[2] Kwansei Gakuin Univ, Sch Sci & Technol, Dept Math Sci, Sanda 6691337, Japan
关键词
Chemotaxis; Logistic source; Parabolic-parabolic system; Global existence; GROWTH SYSTEM; BLOW-UP; MODEL; PREVENTION; DYNAMICS; PATTERNS;
D O I
10.1016/j.na.2010.08.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global existence of solutions to a parabolic-parabolic system for chemotaxis with a logistic source in a two-dimensional domain, where the degradation order of the logistic source is weaker than quadratic. We introduce nonlinear production of a chemoattractant, and show the global existence of solutions under certain relations between the degradation and production orders. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:286 / 297
页数:12
相关论文
共 32 条
[1]   Chemotaxis and growth system with singular sensitivity function [J].
Aida, M ;
Osaki, K ;
Tsujikawa, T ;
Yagi, A ;
Mimura, M .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (02) :323-336
[2]  
[Anonymous], 2003, MATH BIOL
[3]   THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS [J].
BILER, P ;
HEBISCH, W ;
NADZIEJA, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) :1189-1209
[4]   DYNAMICS OF FORMATION OF SYMMETRICAL PATTERNS BY CHEMOTACTIC BACTERIA [J].
BUDRENE, EO ;
BERG, HC .
NATURE, 1995, 376 (6535) :49-53
[5]   COMPLEX PATTERNS FORMED BY MOTILE CELLS OF ESCHERICHIA-COLI [J].
BUDRENE, EO ;
BERG, HC .
NATURE, 1991, 349 (6310) :630-633
[6]   Prevention of blow-up by fast diffusion in chemotaxis [J].
Choi, Yung-Sze ;
Wang, Zhi-an .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (02) :553-564
[7]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633
[8]   Chemotactic collapse for the Keller-Segel model [J].
Herrero, MA ;
Velazquez, JJL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :177-194
[9]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[10]   Global existence for a parabolic chemotaxis model with prevention of overcrowding [J].
Hillen, T ;
Painter, K .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (04) :280-301