Mode regularization, time slicing, Weyl ordering, and phase space path integrals for quantum-mechanical nonlinear sigma models

被引:29
作者
Bastianelli, F
Schalm, K
van Nieuwenhuizen, P
机构
[1] Univ Modena, Dipartimento Fis, I-41100 Modena, Italy
[2] INFN, Sez Bologna, Bologna, Italy
[3] SUNY Stony Brook, Inst Theoret Phys, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.58.044002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A simple, often invoked, regularization scheme of quantum mechanical path integrals in curved space is mode regularization: one expands fields into a Fourier series, performs calculations with only the first M modes, and at the end takes the limit M --> infinity. This simple scheme does not manifestly preserve reparametrization invariance of the target manifold: particular noncovariant terms of order (h) over bar(2) must be added to the action in order to maintain general coordinate invariance. Regularization by time slicing requires a different set of terms of order (h) over bar(2) which can be derived from Weyl ordering of the Hamiltonian. With these counterterms both schemes give the same answers to all orders of loops. As a check we perform the three-loop calculation of the trace anomaly in four dimensions in both schemes. We also present a diagrammatic proof of Matthews' theorem that phase space and configuration space path integrals are equal.
引用
收藏
页数:9
相关论文
共 21 条
[1]   GRAVITATIONAL ANOMALIES [J].
ALVAREZGAUME, L ;
WITTEN, E .
NUCLEAR PHYSICS B, 1984, 234 (02) :269-330
[2]   THE PATH INTEGRAL FOR A PARTICLE IN CURVED SPACES AND WEYL ANOMALIES [J].
BASTIANELLI, F .
NUCLEAR PHYSICS B, 1992, 376 (01) :113-126
[3]   TRACE ANOMALIES FROM QUANTUM-MECHANICS [J].
BASTIANELLI, F ;
VANNIEUWENHUIZEN, P .
NUCLEAR PHYSICS B, 1993, 389 (01) :53-80
[4]   SUPERSTRING ANOMALIES IN THE SEMI-LIGHT-CONE GAUGE [J].
BASTIANELLI, F ;
VANNIEUWENHUIZEN, P ;
VANPROEYEN, A .
PHYSICS LETTERS B, 1991, 253 (1-2) :67-74
[5]   LORENTZ COVARIANCE AND MATTHEWS THEOREM FOR DERIVATIVE-COUPLED FIELD-THEORIES [J].
BERNARD, C ;
DUNCAN, A .
PHYSICAL REVIEW D, 1975, 11 (04) :848-859
[6]   OPERATOR ORDERING AND FEYNMAN-RULES IN GAUGE-THEORIES [J].
CHRIST, NH ;
LEE, TD .
PHYSICAL REVIEW D, 1980, 22 (04) :939-958
[7]   Loop calculations in quantum mechanical non-linear sigma models with fermions and applications to anomalies [J].
deBoer, J ;
Peeters, B ;
Skenderis, K ;
vanNieuwenhuizen, P .
NUCLEAR PHYSICS B, 1996, 459 (03) :631-692
[8]  
DEBOER J, 1995, NUCL PHYS B, V446, P24
[9]   UNDERSTANDING FUJIKAWA REGULATORS FROM PAULI-VILLARS REGULARIZATION OF GHOST LOOPS [J].
DIAZ, A ;
TROOST, W ;
VANNIEUWENHUIZEN, P ;
VANPROEYEN, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1989, 4 (15) :3959-3982
[10]  
Feynman R., 2010, Quantum Mechanics and Path Integrals