A maximum entropy approach for integrating semantic information in statistical language models

被引:0
|
作者
Chueh, CH [1 ]
Chien, JT [1 ]
Wang, HM [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
来源
2004 International Symposium on Chinese Spoken Language Processing, Proceedings | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an adaptive statistical language model, which successfully incorporates the semantic information into an n-gram model. Traditional n-gram models exploit only the immediate context of history. We first introduce the semantic topic as a new source to extract the long distance information for language modeling, and then adopt the maximum entropy (ME) approach instead of the conventional linear interpolation method to integrate the semantic information with the n-gram model. Using the ME approach, each information source gives rise to a set of constraints, which should be satisfied to achieve the hybrid model. In the experiments, the ME language models trained using the China Times newswire corpus achieved 40% perplexity reduction over the baseline bigram model.
引用
收藏
页码:309 / 312
页数:4
相关论文
共 50 条
  • [1] Latent semantic information in maximum entropy language models for conversational speech recognition
    Deng, YG
    Khudanpur, S
    HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, 2003, : 56 - 63
  • [2] A maximum entropy approach to adaptive statistical language modelling
    Rosenfeld, R
    COMPUTER SPEECH AND LANGUAGE, 1996, 10 (03): : 187 - 228
  • [3] Maximum entropy approach to adaptive statistical language modelling
    Carnegie Mellon Univ, Pittsburgh, United States
    Comput Speech Lang, 3 (187-228):
  • [4] Combining Statistical Language Models via the Latent Maximum Entropy Principle
    Shaojun Wang
    Dale Schuurmans
    Fuchun Peng
    Yunxin Zhao
    Machine Learning, 2005, 60 : 229 - 250
  • [5] Combining statistical language models via the latent maximum entropy principle
    Wang, SJ
    Schuurmans, D
    Peng, FC
    Zhao, YX
    MACHINE LEARNING, 2005, 60 (1-3) : 229 - 250
  • [6] Statistical models of complex brain networks: a maximum entropy approach
    Dichio, Vito
    Fallani, Fabrizio De Vico
    REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (10)
  • [7] Integrating Semantic Term Relations into Information Retrieval Systems Based on Language Models
    ALMasri, Mohannad
    Tan, KianLam
    Berrut, Catherine
    Chevallet, Jean-Pierre
    Mulhem, Philippe
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 136 - 147
  • [8] Refined lexicon models for statistical machine translation using a maximum entropy approach
    Varea, IG
    Och, FJ
    Ney, H
    Casacuberta, F
    39TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2001, : 204 - 211
  • [9] Latent maximum entropy principle for statistical language modeling
    Wang, SJ
    Rosenfeld, R
    Zhao, YX
    ASRU 2001: IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING, CONFERENCE PROCEEDINGS, 2001, : 182 - 185
  • [10] Identifying semantic roles using maximum entropy models
    Moreda, P
    Fernández, M
    Palomar, M
    Suárez, A
    TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2004, 3206 : 163 - 170