State-dependent effective interactions in oscillator networks through coupling functions with dead zones

被引:9
作者
Ashwin, Peter [1 ]
Bick, Christian [1 ]
Poignard, Camille [1 ]
机构
[1] Univ Exeter, EPSRC Ctr Predict Modelling Healthcare, Exeter, Devon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2019年 / 377卷 / 2160期
基金
英国工程与自然科学研究理事会;
关键词
coupled oscillator; network dynamical system; coupling function; ASYNCHRONOUS NETWORKS; PERIODIC-SOLUTIONS; DYNAMICS; SYNCHRONIZATION; EXISTENCE; SPECTRA;
D O I
10.1098/rsta.2019.0042
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The dynamics of networks of interacting dynamical systems depend on the nature of the coupling between individual units. We explore networks of oscillatory units with coupling functions that have 'dead zones', that is the coupling functions are zero on sets with interior. For such networks, it is convenient to look at the effective interactions between units rather than the (fixed) structural connectivity to understand the network dynamics. For example, oscillators may effectively decouple in particular phase configurations. Along trajectories, the effective interactions are not necessarily static, but the effective coupling may evolve in time. Here, we formalize the concepts of dead zones and effective interactions. We elucidate how the coupling function shapes the possible effective interaction schemes and how they evolve in time. This article is part of the theme issue 'Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.
引用
收藏
页数:24
相关论文
共 55 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
Agaev RP, 2000, AUTOMAT REM CONTR+, V61, P1424
[3]  
[Anonymous], 2017, PHYS REV X, DOI DOI 10.1103/PHYSREVX.7.041044)
[4]  
[Anonymous], 2000, GRAD TEXT M
[5]  
[Anonymous], 2017, REV MOD PHYS, DOI DOI 10.1103/REVM0DPHYS.89.045001)
[6]  
[Anonymous], 2015, CHAOS, DOI DOI 10.1063/1.4922971)
[7]   THE DYNAMICS OF N-WEAKLY COUPLED IDENTICAL OSCILLATORS [J].
ASHWIN, P ;
SWIFT, JW .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) :69-108
[8]  
Ashwin P., 2016, Front. Appl. Math. Stat., V2, P1
[9]   Dynamics on networks of cluster states for globally coupled phase oscillators [J].
Ashwin, Peter ;
Orosz, Gabor ;
Wordsworth, John ;
Townley, Stuart .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (04) :728-758
[10]   Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience [J].
Ashwin, Peter ;
Coombes, Stephen ;
Nicks, Rachel .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2016, 6 :1-92