GaN laser diodes for quantum sensing, optical atomic clocks and precision metrology

被引:1
|
作者
Najda, S. P. [1 ]
Perlin, P. [1 ,2 ]
Suski, T. [2 ]
Stanczyk, S. [1 ,2 ]
Leszczynski, M. [1 ,2 ]
Schiavon, D. [1 ,2 ]
Slight, T. [3 ]
Gwyn, S. [4 ]
Watson, S. [4 ]
Kelly, A. E. [4 ]
Knapp, M. [5 ]
Haji, M. [5 ]
机构
[1] TopGaN Ltd, Ul Sokolowska 29-37, PL-01142 Warsaw, Poland
[2] Inst High Pressure Phys PAS, Ul Sokolowska 29-37, PL-01142 Warsaw, Poland
[3] Sivers Photon, Hamilton Int Technol Pk,4 Stanley Blvd, Glasgow G72 0BN, Lanark, Scotland
[4] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[5] Natl Phys Lab, Teddington TW11 0LW, Middx, England
基金
“创新英国”项目;
关键词
GaN laser; GaN systems; Quantum Sensing; Optical Atomic Clocks;
D O I
10.1117/12.2606525
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum technologies containing key GaN laser components will enable a new generation of precision sensors, optical atomic clocks and secure communication systems for many applications such as next generation navigation, gravity mapping and timing since the AlGaInN material system allows for laser diodes to be fabricated over a wide range of wavelengths from the U.V. to the visible. We report our latest results on a range of AlGaInN diode-lasers targeted to meet the linewidth, wavelength and power requirements suitable for quantum sensors such as optical clocks and cold-atom interferometry systems. This includes the [5s(2)S(1/2)-5p(2)P(1/2)] cooling transition in strontium(+) ion optical clocks at 422 nm, the [5s(2) S-1(0)-5p(1)P(1)] cooling transition in neutral strontium clocks at 461 nm and the [5s(2)s(1/2) - 6p(2)P(3/2)] transition in rubidium at 420 nm. Several approaches are taken to achieve the required linewidth, wavelength and power, including an extended cavity laser diode (ECLD) system and an on-chip grating, distributed feedback (DFB) GaN laser diode.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] GaN laser diodes for high-power optical integration and quantum technologies
    Najda, S. P.
    Perlin, P.
    Suski, T.
    Marona, L.
    Stanczyk, S.
    Wisniewski, P.
    Czernecki, R.
    Schiavon, D.
    Leszczynski, M.
    GALLIUM NITRIDE MATERIALS AND DEVICES XIII, 2018, 10532
  • [22] Quantum Optical Technologies for Metrology, Sensing, and Imaging
    Dowling, Jonathan P.
    Seshadreesan, Kaushik P.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (12) : 2359 - 2370
  • [23] Parallel quantum control meets optical atomic clocks
    Simone Colombo
    Nature Physics, 2024, 20 : 177 - 178
  • [24] An elementary quantum network of entangled optical atomic clocks
    B. C. Nichol
    R. Srinivas
    D. P. Nadlinger
    P. Drmota
    D. Main
    G. Araneda
    C. J. Ballance
    D. M. Lucas
    Nature, 2022, 609 : 689 - 694
  • [25] Parallel quantum control meets optical atomic clocks
    Colombo, Simone
    NATURE PHYSICS, 2024, 20 (02) : 177 - 178
  • [26] An elementary quantum network of entangled optical atomic clocks
    Nichol, B. C.
    Srinivas, R.
    Nadlinger, D. P.
    Drmota, P.
    Main, D.
    Araneda, G.
    Ballance, C. J.
    Lucas, D. M.
    NATURE, 2022, 609 (7928) : 689 - +
  • [27] Quantum engineering of atomic phase shifts in optical clocks
    Zanon-Willette, T.
    Almonacil, S.
    de Clercq, E.
    Ludlow, A. D.
    Arimondo, E.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [28] Retrieving Ideal Precision in Noisy Quantum Optical Metrology
    Bai, Kai
    Peng, Zhen
    Luo, Hong-Gang
    An, Jun-Hong
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)
  • [29] Optical characterization of InGaN/GaN quantum well active region of green laser diodes
    Tian, Aiqin
    Liu, Jianping
    Zhang, Liqun
    Ikeda, Masao
    Fan, Xiaowang
    Zhang, Shuming
    Li, Deyao
    Zhang, Feng
    Wen, Pengyan
    Cheng, Yang
    Yang, Hui
    APPLIED PHYSICS EXPRESS, 2017, 10 (01)
  • [30] Trapped-ion optical atomic clocks at the quantum limits
    Leibrandt, David R.
    Brewer, Samuel M.
    Chen, Jwo-Sy
    Chou, Chin-Wen
    Hankin, Aaron M.
    Hume, David B.
    Wineland, David J.
    PROCEEDINGS OF THE 48TH ANNUAL PRECISE TIME AND TIME INTERVAL SYSTEMS AND APPLICATIONS MEETING, 2017, : 48 - 52