The initial-boundary value problem for general non-local scalar conservation laws in one space dimension

被引:21
作者
De Filippis, Cristiana [1 ,2 ]
Goatin, Paola [1 ]
机构
[1] Inria Sophia Antipolis Mediterranee, Biot, France
[2] Univ Oxford, Math Inst, Oxford, England
关键词
Scalar conservation laws; Non-local flux; Initial-boundary value problem; Lax-Friedrichs scheme; LOOK-AHEAD DYNAMICS; TRAFFIC FLOW; WELL-POSEDNESS; MODEL; SIMULATION; EQUATION; VELOCITY; SCHEMES; SYSTEMS;
D O I
10.1016/j.na.2017.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global well-posedness result for a class of weak entropy solutions of bounded variation (BV) of scalar conservation laws with non-local flux on bounded domains, under suitable regularity assumptions on the flux function. In particular, existence is obtained by proving the convergence of an adapted Lax-Friedrichs algorithm. Lipschitz continuous dependence from initial and boundary data is derived applying KruZhkov's doubling of variable technique. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 156
页数:26
相关论文
共 27 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation [J].
Amadori, Debora ;
Ha, Seung-Yeal ;
Park, Jinyeong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) :978-1022
[3]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[4]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[5]   On a nonlocal hyperbolic conservation law arising from a gradient constraint problem [J].
Amorim, Paulo .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (04) :599-614
[6]  
Bardos C., 1979, PARTIAL DIFFERENTIAL, V4, P1017
[7]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[8]   Well-posedness of a conservation law with non-local flux arising in traffic flow modeling [J].
Blandin, Sebastien ;
Goatin, Paola .
NUMERISCHE MATHEMATIK, 2016, 132 (02) :217-241
[9]   Kruzkov's estimates for scalar conservation laws revisited [J].
Bouchut, F ;
Perthame, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2847-2870
[10]   An improved version of the Hughes model for pedestrian flow [J].
Carrillo, Jose A. ;
Martin, Stephan ;
Wolfram, Marie-Therese .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04) :671-697