The initial-boundary value problem for general non-local scalar conservation laws in one space dimension

被引:21
作者
De Filippis, Cristiana [1 ,2 ]
Goatin, Paola [1 ]
机构
[1] Inria Sophia Antipolis Mediterranee, Biot, France
[2] Univ Oxford, Math Inst, Oxford, England
关键词
Scalar conservation laws; Non-local flux; Initial-boundary value problem; Lax-Friedrichs scheme; LOOK-AHEAD DYNAMICS; TRAFFIC FLOW; WELL-POSEDNESS; MODEL; SIMULATION; EQUATION; VELOCITY; SCHEMES; SYSTEMS;
D O I
10.1016/j.na.2017.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global well-posedness result for a class of weak entropy solutions of bounded variation (BV) of scalar conservation laws with non-local flux on bounded domains, under suitable regularity assumptions on the flux function. In particular, existence is obtained by proving the convergence of an adapted Lax-Friedrichs algorithm. Lipschitz continuous dependence from initial and boundary data is derived applying KruZhkov's doubling of variable technique. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 156
页数:26
相关论文
共 27 条
  • [1] NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS
    Aggarwal, Aekta
    Colombo, Rinaldo M.
    Goatin, Paola
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) : 963 - 983
  • [2] On the global well-posedness of BV weak solutions to the Kuramoto-Sakaguchi equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (02) : 978 - 1022
  • [3] AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW
    Amadori, Debora
    Shen, Wen
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) : 105 - 131
  • [4] ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS
    Amorim, Paulo
    Colombo, Rinaldo M.
    Teixeira, Andreia
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01): : 19 - 37
  • [5] On a nonlocal hyperbolic conservation law arising from a gradient constraint problem
    Amorim, Paulo
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (04): : 599 - 614
  • [6] Bardos C., 1979, PARTIAL DIFFERENTIAL, V4, P1017
  • [7] On nonlocal conservation laws modelling sedimentation
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    Tory, E. M.
    [J]. NONLINEARITY, 2011, 24 (03) : 855 - 885
  • [8] Well-posedness of a conservation law with non-local flux arising in traffic flow modeling
    Blandin, Sebastien
    Goatin, Paola
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (02) : 217 - 241
  • [9] Kruzkov's estimates for scalar conservation laws revisited
    Bouchut, F
    Perthame, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) : 2847 - 2870
  • [10] An improved version of the Hughes model for pedestrian flow
    Carrillo, Jose A.
    Martin, Stephan
    Wolfram, Marie-Therese
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04) : 671 - 697