Making holes in hyperspaces

被引:10
作者
Anaya, Jose G. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
continuum; hyperspaces; property (b); unicoherence;
D O I
10.1016/j.topol.2006.09.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a metric continuum and C(X) the hyperspace of all nonempty subcontinua of X. Let A epsilon C(X), A is said to make a hole in C(X), if C(X) - {A} is not unicoherent. In this paper we study the following problem. Problem: For which A epsilon C(X), A makes a hole in C(X). In this paper we present some partial solutions to this problem in the following cases: (1) A is a free arc; (2) A is a one-point set; (3) A is a free simple closed curve; (4) A = X. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2000 / 2008
页数:9
相关论文
共 13 条
[1]  
Anaya J.G., MAKING HOLES HYPERSP
[2]   PARTITIONING A SET [J].
BING, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (12) :1101-1110
[3]  
Eilenberg S., 1936, Fundam. Math., V26, P61
[4]  
Garcia-Maynez A., 1989, AN I MAT U NAC AUTON, V29, P17
[5]  
GREENBERG MJ, 1981, ALGEBRAIC TOPOLOGY
[6]   Multicoherence of Whitney levels [J].
Illanes, A .
TOPOLOGY AND ITS APPLICATIONS, 1996, 68 (03) :251-265
[7]  
Illanes A., 2002, Glasnik Matematicki, Serija III, V37, P347
[8]  
Illanes A., 1999, Monographs and Textbooks in Pure and Applied Math., V216
[9]  
Illanes A., 2004, QUESTIONS ANSWERS GE, V22, P117
[10]  
Mardesic S., 1958, Fundamenta Mathematicae, V46, P29, DOI [10.4064/fm-46-1-29-45, DOI 10.4064/FM-46-1-29-45]